
CybersecurityShafarenko Cybersecurity (2021) 4:4
https://doi.org/10.1186/s42400-020-00068-0

RESEARCH Open Access

A PLS blockchain for IoT applications:
protocols and architecture
Alex Shafarenko

Abstract

This paper proposes an architecture and a protocol suite for a permissioned blockchain for a local IoT network. The
architecture is based on a sealed Sequencer and a Fog Server running (post-quantum) Guy Fawkes protocols. The
blocks of the blockchain are stored in networked Content Addressable Storage alongside any user data and validity
proofs. We maintain that a typical IoT device can, despite its resource limitations, use our blockchain protocols directly,
without a trusted intermediary. This includes posting and monitoring transactions as well as off-chain (post-quantum)
emergency communications without an explicit public key.

Keywords: Blockchain, Guy Fawkes protocol, Post-quantum, HORS-OTS, LoRa, Concurrent transmission

Introduction
This article presents a Block Chain construction based
on the well-known Guy Fawkes Protocol (GFP)
(Anderson et al. 1998) for digital signature, which we
extend and bring to bear on Block Chain (BC) technology
intended for a swarm of low-power devices (IoT things).
The primary purpose of this blockchain is to support an
immutable distributed ledger that ensures the authentic-
ity and sequencing of user records posted on it. Financial
transactions for IoT are not our intention, but they should
be compatible with our approach.

Motivation We set ourselves the following design con-
straints on behalf of the participating things:

1. Post Quantum restriction, in particular no public key
crypto.

2. Low power, low energy. Notice that the avoidance of
public key crypto is synergetic with this constraint.

3. Low local storage. A thing may have a flash card
embedded in it, but the use of the flash card eats into
the energy budget.

4. Local communications with low bandwidth and
short messages. The security protocol should be

Correspondence: A.Shafarenko@herts.ac.uk
Department of Computer Science, University of Hertfordshire, Hatfield
AL10 9AB, UK

conducted via UHF broadcasts over the target area.
An effective adversary should have to radiate
significant power (reliably over the legal limit) and
expose itself to triangulation.

5. It must be possible for all things to authenticate the
ledger under realistic assumptions without relying on
a trusted intermediary.

The above constraints have not, to the best of our
knowledge, been considered together, but are characteris-
tic of low-end IoT devices. The Post Quantum restriction
is currently a bonus (due to insufficient power of available
quantum computing), but will doubtless become impor-
tant at some point in not so distant future.

Challenge We believe the main security risk with our
scheme is the Denial of Service (DoS) attack. Due to the
use of local communications (constraint 4 above), DoS
attacks only need to be impeded but not totally sup-
pressed. The latter is impossible due to the possibility
of an attacker’s physically jamming the communication
infrastructure.
DoS is our only concern for the following reasons. Our

proposed protocol does not permit an imposter to imper-
sonate an IoT device to the blockchain manager provided
that the device was correctly enrolled on the blockchain
and is somehow made physically secure.

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-020-00068-0&domain=pdf
http://orcid.org/0000-0001-8796-6542
mailto: A.Shafarenko@herts.ac.uk
http://creativecommons.org/licenses/by/4.0/

Shafarenko Cybersecurity (2021) 4:4 Page 2 of 17

Another possible threat is a weaker version of man-
in-the-middle whereby the man in the middle does not
attempt to convince the legitimate recipient that he is the
legitimate sender; he instead receives the sender’s broad-
cast (i.e. radio)message while simultaneously jamming the
sender’s signal so as to convince the legitimate recipient
that no message has been sent yet. The man in the mid-
dle then uses the received message to defeat the protocol
and impersonate (spoof) the legitimate sender to the legit-
imate recipient. We call such attacks jam/spoof attacks
(more detail given in the section “Original GFP”) and pro-
pose a countermeasure (see the section “Posting on the
blockchain”).

Contributions of the paper:

• We have proposed a Guy-Fawkes type protocol as a
basis for a blockchain construction. We show that the
protocol achieves authentication, non-repudiation
and secure sequencing of the blockchain blocks by
itself (not relying on block content). The protocol
does not require public key crypto or high-volume
communication, both important for an IoT device
that is limited in its compute power and
communication duty cycle.

• We use the principles of GFP to construct a protocol
for an IoT device to post on the blockchain, again
without public key crypto, but with guaranteed
authenticity and non-repudiation and similarly low
communication costs.

• Since the protocol by itself does not protect against
DoS attacks we further proposed a network
architecture which reduces DoS exposure by
exploiting the physical properties of a mainstream
communication format: LoRa.

• Finally, since our focus is on the IoT applications, we
have constructed an off-chain emergency
communication mode that provides authentication
and non-repudiation without communicating or
storing additional authenticated key material and
again, without public key crypto. This is achieved by
re-using nonces from the main protocol. As a result
each thing is able to send an emergency message
between two blocks of the blockchain while enabling
any observer of the blockchain to prove the
authenticity and provenance of the emergency
message based solely on the already published blocks.

Structure The section “Basic protocols” introduces the
blockchain protocol. The section “System architecture”
defines the system architecture. The protocol for post-
ing content on the blockchain is presented and discussed
in the section “Posting on the blockchain”. In the subse-
quent section, the section “Enrolment and optimisations”,

we show how a user can be enrolled on the chain at a point
other than the beginning. The next section puts forward
a solution for emergency communications, when the orig-
inator cannot wait for the next block of the blockchain
to be published. The section “Related work” cites some
related work and finally there are conclusions.

Basic protocols
The Guy Fawkes Protocol family was first proposed by
a Cambridge group (Anderson et al. 1998) 10 years
ahead of Nakamoto. The original formulation is very clear
and can be practically useful, but it was not specifically
intended as a blockchain protocol. We will summarise
it here for ease of reference, but we still recommend
(Anderson et al. 1998) as it contains some important
background and a useful discussion.

Original GFP
The original GFP is a protocol intended for signing mes-
sages Mi, i = 1, 2, . . . using a series of secret codewords
Xi = 0, 1, . . ., which are revealed one after another as the
protocol progresses. The initial codeword, X0, is authen-
ticated out of band when it is revealed, e.g. by digital
signature.
The GFP is defined inductively as an unlimited series of

rounds. At any round i ≥ 0:

1. Select a random codeword Xi+1 and keep it
confidential.

2. Form its hash h (Xi+1)
3. Publish Zi+1 = h (Mi+1, h (Xi+1) ,Xi)
4. Reveal the hash pre-image:Mi+1, h (Xi+1), and Xi

Here h(·) is a cryptographic hash. The security proper-
ties of the GFP are based on the computational hardness
of fitting a pre-image to a known hash, which is also the
basis of, for example, the well-known proof-of-work for
the Bitcoin blockchain, and is believed to be robust for a
strong enough hash function h(·) even Post Quantum.
How does it work? As this is a signature protocol, it

is supposed to ensure that only the originator can run it
successfully to sign their messages. The originator is dif-
ferentiated by their knowledge of X0 and, by induction,
of every other Xi, since the introduction of Xi+1 in step
1 of any round is accompanied by the disclosure of Xi in
step 4 of the same round. The verifier at step 4 is able
to verify that the originator is who they claim they are
because it is cryptographically hard to fit the pre-image
(Mi+1, h (Xi+1) ,Xi) to its previously published hash Zi+1,
which means that it is the same pre-image that was used
by the actor that published Zi+1. Since a part of that pre-
image is Xi, which is the pre-image of the hash h (Xi)
published as step 4 of the previous round, i − 1, we con-
clude by the same logic, that the actor is the same as one
present at round i−1.We now claim by induction that the

Shafarenko Cybersecurity (2021) 4:4 Page 3 of 17

actor revealing the pre-image in step 4 round i is the same
as that in round 0. However, to participate in round 0, the
actor has to know the signed value of X0 before that round,
and only the legitimate originator does. This proves the
provenance of all messagesMi and excludes repudiation.
However, the protocol is phrased in terms of “publish”

and “reveal”, and as it often happens, the definition of
these terms can leave loopholes that nullify the security
properties.

Jam/spoof attack. The definitive paper (Anderson et al.
1998) treats step 3 non-specifically and gives newspa-
per advert publishing as an example of what is meant by
“publish”. The tacit assumption here is that whatever the
originator publishes will be seen by verifiers with certainty
before the step-4 message is revealed. Therein lies the
protocol’s main vulnerability.
Imagine a situation when an adversary is able to prevent

the verifier from receiving the newspaper in question, but
the adversary receives it. It then sends the counterfeit copy
of the newspaper, in which the message is not included,
to a verifier. The verifiers will be unaware that the step-
3 message has been published. When the step-4 message
is revealed by the originator, the adversary learns Xi and
is able to publish their own step-3 message impersonat-
ing the originator and using the value of Xi learned from
the originator when the latter revealed it. Then the adver-
sary is able to send a step-4 message consistent with that
step-3 message and from this time on the current and all
subsequent messages are compromised.1
We call this the jam/spoof attack. Its existence high-

lights the fact that the verb “publish” in the protocol
description means not only to send a message to the
world, but also to guarantee that it has been received.
Which is how “publish” differs there from the verb “reveal”,
which assumes no such guarantee. The verifier expects to
see a reveal message after it has received a publish mes-
sage. If the reveal message is not received before the next
publish message, the verifier will simply request one and
will keep requesting it until it receives the correct content
(the pre-image of the publishmessage).
The metaphor of newspaper is ideal for this kind of

“publish” (provided that the verifier can at least access
a library copy of each newspaper issue in time for the
reveal message). In reality “publishing” is done by net-
work broadcasting, and in the IoT case that is quite often
radio broadcasting, where both jamming and spoofing are
quite feasible. Finally, it is interesting to observe that the
jam/spoof attack is of the same kind as the classic man-
in-the-middle attack, since the adversary impersonates
the originator to the verifier by placing itself in between,

1 Notice that neither step 3, nor step 4 require an authenticated channel; in
other words, anybody can send these messages and the protocol is supposed
to be able to determine which of them come from the genuine counterparty.

however the behaviour is different from the classical
unauthenticated public-key exchange.

DoS attack. An adversary can exhaust the verifiers’
resources without jamming the originator. If M step-3
messages and N step-4 messages are sent impersonat-
ing the originator, the verifier will have to perform up to
M × N verification actions, whereby

i the value Xi of the step-4 message is hashed to match
with the value of h (Xi+1) from the previous round. If
they don’t match, this step-4 message is invalid,
otherwise

ii the whole step-4 message is hashed to match with at
least one step-3 message.

This takes into account the fact that the true step-4
message can be delayed as it is forwarded through the net-
work, and that the adversary can receive it early. Then a
large number of fake step-4 messages with the correct Xi
can be produced that pass check (i), making the amount
of work closer to the limitM × N .
We will address both attacks in our version of GFP

which we present next.

PLS protocol
We will now introduce a similar construction optimised
for our purposes.

Goal Assume that a single transmitter is to broadcast a
stream of public, authenticated messages to an unspeci-
fied number of receivers. The following conditions must
be satisfied:

1. It should be possible (ideally at low cost) for each
receiver to prove, without trusting any intermediary,
that the message was sent by the transmitter.

2. It should be cryptographically hard for an attacker to
modify any message or to change the order of
messages without the receivers noticing

3. The broadcaster should be able to send an unlimited
number of messages without weakening the security
of the previous two constraints (this is common with
the original GFP).

Now to the protocol. It uses a standard cryptographic
hashH(x) (e.g. SHA-256). All values exceptMk are binary
strings of the same length as H. Additionally the protocol
uses symmetric encryption Eq(p) which encrypts plain-
text p under the key q producing a ciphertext, and its dual
decryption: Dq(Eq(p)) = p. This could be any standard
cipher, e.g. AES128, suitably adapted to the key and text
size using one of the standard methods.
The protocol operates in steps according to the wall-

clock time. All receivers and the transmitter synchronise

Shafarenko Cybersecurity (2021) 4:4 Page 4 of 17

their clocks so that when the transmitter’s clock registers
a time tT , any receiver’s clock tR is no more than ε away:

|tT − tR| < ε .

The transmitter broadcasts at regular intervals, t0, t0 +
τ , t0 + 2τ , . . ., where τ � ε. Each broadcast consists of
three messages of the same length as H : P, L and S; they
are a proof, link and signature message, respectively. It is
convenient to think of them as being broadcast on three
different channels, or in three different time slots, or with
a tag that tells the receiver which message it is. The mes-
sages are not explicitly indexed, but it is convenient to
think of them as being indexed with the Broadcast Inter-
val Number (BIN): BIN 0 corresponds to the interval [t0+
ε, t0+τ−ε], BIN 1 to the interval [t0+τ+ε, t0+2τ−ε], etc.
Note that the P, L and S broadcasts in the same interval
are not mutually ordered.
The protocol is presented in Table 1. In or before the

first interval, receivers obtain independent authentication
of P1. In each interval k the transmitter creates a fresh ran-
dom nonce, Nk+1, and keeps it secret until the end of the
next interval k + 1. One such nonce, N1, is created by the
transmitter before launching the protocol.
At every step the transmitter transmit the three mes-

sages mentioned above and each receiver attempts to
receive them. The link message is saved for the next step
and the signature and proof messages are used in the
current one. Next the receiver executes the validation pro-
cedure detailed in the middle column, which consists of
one bitwise XOR calculation and one hash calculation.
The calculations involve the current proof message Pk
and the link message Lk−1 saved at the previous step. The
receiver may have more than one candidate value for P

and L which will be obtained by peer communication
between receivers. The receiver will subject each (P, L)

pair to the validation procedure until it obtains the pair
that satisfies it. If no pair passes validation, the protocol
fails due to denial of service.
Otherwise the valid (P, L) pair is combined with the cur-

rent signature message Sk to obtain a signedmessage hash
σk = H(Mk). From that time on, the receiver will treat a
message whose hash equals σk as having being signed by
the transmitter.

Security analysis of PLS
Threat model.

i An attacker can force one or more receivers to
receive the attacker’s arbitrary message instead of the
one being transmitted by the transmitter, or prevent
a receiver from receiving the message at all.

ii However, the attacker cannot thus disrupt all
receivers and it cannot make any receiver conclude
that the broadcast did not take place. The former can
be achieved by delivering at least one copy of the
broadcast message by an alternative physical channel,
and the latter by broadcasting messages on a public
wall-clock schedule.

Point (ii) makes it possible for a receiver that the proto-
col determines has received an invalid message to solicit
unauthenticated candidate messages from peer receivers.
We will show that using the protocol each receiver will
be able to select the genuine message out of a set of can-
didates. This makes threat (i) a DoS threat rather than a
data-integrity one.
We continue with Table 1.

Table 1 PLS Protocol

BIN Transmit/Receive Verify Obtain

1 L1 = H(N2) ⊕ N1

S1 = EN1 (H(M1) ⊕ H(N2)) P1 out of band

P1 = H(N1)

2 L2 = H(N3) ⊕ N2

S2 = EN2 (H(M2) ⊕ H(N3)) H(L1 ⊕ P2) = P1 H(M1) = P2 ⊕ DL1⊕P2S1

P2 = H(N2)

3 L3 = H(N4) ⊕ N3

S3 = EN3 (H(M3) ⊕ H(N4)) H(L2 ⊕ P3) = P2 H(M2) = P3 ⊕ DL2⊕P3S2

P3 = H(N3)

.

k Lk = H(Nk+1) ⊕ Nk

Sk = ENk (H(Mk) ⊕ H(Nk+1)) H(Lk−1 ⊕ Pk) = Pk−1 H(Mk−1) = Pk ⊕ DLk−1⊕Pk Sk−1

Pk = H(Nk)

Shafarenko Cybersecurity (2021) 4:4 Page 5 of 17

At BIN=1, the transmitter sends out the link, signature
and proof messages, saves N2 and keeps it secret till the
end of the next interval. The receiver receives and saves
the received messages. It uses the remaining time in the
interval to poll its peers to learn any alternative values of
L, S, and P should they be received (which may be due
to signal propagation problems, deliberate jamming or a
cyber attack).
At BIN=2, the receiver receives P2 (possibly more than

one candidate value)and verifies that for some candidates
L1 and P2, H(L1 ⊕ P2) = P1. It means that these values
of L1 and P2 are genuine. Indeed, an attacker wishing to
convince the receiver that an alternative link message

L̂1 = H(N̂2) ⊕ N1 �= L1
is genuine in order to make a forged signature for its own
message M̂1

Ŝ1 = EN1(H(M̂1) ⊕ H(N̂2))

would have to have sent these messages at BIN=1, when
only the transmitter knows the value ofN2, so the attacker
would have to use its own nonce, N̂2 �= N2, and then force
the receiver to receive P̂2 = H(N̂2). To succeed at that, the
attacker must be able to obtainN1 within interval 1, to use
it in the L̂1 message. But all that is publicly known about
N1 then is its hash, H(N1) = P1.
That is the linchpin of the security of any Guy Fawkes

protocol, our version or the classic (Anderson et al. 1998)
alike. The attacker has to find a pre-image of a public hash
value in order to mount a successful attack. The chances
of finding a pre-image are slim, 2−(l−1); for l = 256
the attacker would have to do around 1077 hash calcula-
tions to find the pre-image on a classical computer. This
can be improved upon by quantum computing, reducing
the number to 2−l/2 ≈ 1038, still reliably unfeasible and
certainly good enough for the application domain of the
IoT.
Leaving the DoS scenario aside, we assume that the

receivers succeed. Next the receiver uses the formula in
the last column of Table 1 to calculate H(M1) on all can-
didate S-messages recorded at BIN=1. All these values are
considered equally valid, but only one of them, namely the
genuine value of H(M1), whereM1 is a message known to
the transmitter at BIN=1, can ever be used. An attacker
corrupting message S1 can only achieve denial of service:
to fit a message to an arbitrary hash value of it (for exam-
ple, by extending the message with a non-data-bearing
tail) is computationally as difficult as it is to fit N1 to a
known H(N1).
The reader may wonder about the purpose of encryp-

tion. In the original Guy Fawkes protocol only hashes
are used, but at least four hash-length items need to
be communicated in each signing round, whereas PLS
requires only three, a 25% saving in communication costs.

Communication is important for the IoT world, where
typically the radio duty cycle of a thing is limited to a
fraction of 1%. Also we argue that the computational cost
of a hardware-accelerated symmetric encryption (which
tends to be AES) is several times cheaper than that of
a hash for at least some popular IoT platforms, see the
section “Related work” for a specific example and possible
reasons.
Another question is whether the public availability

of H(M1) gives the attacker an alternative method for
obtaining N1 at BIN=1: by brute-forcing the encryption
key. The answer is that this would require the plaintext
(the cipher text is publicly available as S1 at this point),
and to obtain the plaintext the attacker needs to know
H(N2) = P2, which is not revealed at BIN=1. To obtain
H(N2) from the public value of L1, the attacker requires
the value of N1 which is what the attacker is trying to fit.
At the end of interval 2 the receiver will have received,

and collected from peers all alternative versions of, L2 and
S2 and is now prepared for the next, third interval, etc.
The protocol is run periodically as long as the transmitter
stays in commission. Since any secrets have a short life-
time 2τ after which they are published rather than merely
not used, there is no accumulation of confidential mate-
rial at the transmitter site; consequently the transmitter
has no security motivated expiration time.

System architecture
The PLS protocol described above is well suited to serve
as a basis for a blockchain system. The key property that
makes it so suitable is provable, time-referenced forward
chaining, the fact that L-messages establish a cryptograph-
ically protected, unsplittable temporal chain of {Mi}, with
eachMi being defined by its hashH(Mi). With the head of
the chain independently authenticated for all actors before
the protocol launch, the set of link/proof pairs and the
hardness of the hash pre-image problem guarantee that
the chain can be validated in isolation by any observerwho
is present and able to receive messages at broadcast times.
No additional source of trust is required to validate the
chain although a trusted third party may well be useful as
defence against a DoS attack, bearing in mind that light
touch security would be sufficient for that purpose.
We propose an architecture of an IoT system with

blockchain services, see Fig. 1.

Sequencer At the core of it is placed a physically
secure, firmware based, multi-radio connected blockchain
Sequencer. The job of the Sequencer is, as the name sug-
gests, building the sequence of chained blocks. The blocks
themselves are prepared for the Sequencer by the Fog
Server (see below). The Fog Server communicates with
the Sequencer in one way (transmits), over a separate
authenticated radio channel (Bluetooth, for example), the

Shafarenko Cybersecurity (2021) 4:4 Page 6 of 17

Fig. 1 Architecture of a PLS-blockchain system

details of which are private to them. What differentiates
the Sequencer from the Fog Server is the fact that the
Sequencer is not connected to any general purpose net-
works. Its security role is to run an active PLS protocol on
schedule and to keep each nonce Nk confidential until the
next broadcast period. The Sequencer’s embodiment as a
separate air-gapped unit with enhanced physical security
serves only one purpose: prevention of a blockchain split,
which is effective if and only if the confidentiality of Nk
over a short period of time can be assured. Split avoidance
is important for defeating DoS attacks, but the validity of
the blocks is not in jeopardy due to the second aspect of
the Sequencer, namely the fact that it performs a radio
broadcast using a wall-clock synchronised, long-distance
signal. As a result, if the defences fail and an attacker com-
promises the Sequencer, the only non-DoS way to profit
from this is to have different broadcasts directed to differ-
ent groups of things. In this case the inconsistencies will
eventually be detected by radiomonitoring, but it could be
too late, especially if things perform critical work, hence
the importance of air-gapping and physical protection for
the Sequencer.

CAS. For the purposes of sequencing and signing we are
going to use the PLS protocol (and a similar SLVP protocol
for things, see the section “Posting on the blockchain”), but
what is going to be sequenced and signed are in fact the
hashes of the actual blocks and blockchain users’ content
messages of variable size. To store these items and retrieve
them at a user’s request, we place aContent-Addressable
Storage (CAS) unit on a local TCP/IP subnet and organ-
ise a private channel (behind the organisation’s firewall)
between the unit and the Fog Server. CAS operates in

WORM mode: a file is stored once under the hash of its
content as its file name, which means that it cannot be
changed without the file name changing, that it is easy
to verify that it hasn’t been changed and that no trust
between a user and the CAS is required. Due to the irre-
versible nature of hashing, it is prohibitively expensive to
store a different content under the same hash, so all the
content recipient needs to do to ascertain the integrity of
the content is check that its hash is correct.
Every time a new block is formed to go on the block

chain, the block content is stored in CAS and the hash of
it is used in the protocol. All things have access to CAS via
the Server or its Proxy and can retrieve files whenever the
content hash is known.
Note that the hash functions used by CAS and our

protocols do not have to be the same. By extending the
encryption in protocol S-messages to accommodate a
longer plaintext (which would require expandingH(Nk+1)
by replication and concatenation), one could use longer
hashes for storage than those used in the protocol. It may
be profitable to do so given that the second pre-image
resistance of a hash in the PLS protocol need only to with-
stand an attack over 2τ , while the resistance of the hash
function used to compute CAS file names is potentially
required to be much greater (years if not decades before
broken). This is not an argument for a longer hash for
CAS (a standard SHA-256 is quite adequate even against
quantum attacks) but perhaps a shorter hash for PLS (128
bits) could be sufficient. This can be achieved easily, by
just taking the first 128 bits from the 256 bit output of
the SHA-256 hash and ignoring the rest. The shortening
is possible due to the fact that security properties of a
correctly designed hash function are assured on a per-bit

Shafarenko Cybersecurity (2021) 4:4 Page 7 of 17

basis for the output value; so a subset of the output bits
has the same properties as the full set except the collision
frequency2 (vulnerability to a pre-image attack).

Fog Server. An IoT system’s security cannot be com-
pletely decentralised since, ultimately, the network of
things is owned by an organisation, and since that organ-
isation should have authority to add and remove things,
configure them, assign jobs to them, etc. at any time and
without waiting for a slow validation process characteris-
tic of most blockchains. This does not necessarily mean
that everything should be centralised; in fact very little
centralisation is required: mainly the issues of reconfig-
uration (adding/removing) and conflict resolution (proof
service) and possibly running smart contracts on the
blockchain, which we will not discuss here.
The presence of the infrastructure above the IoT can

be captured by introducing into our architecture an actor
that we call the Fog Server (FS), which is a local datacen-
ter that has direct connection to things via a suitable radio
network (e.g. LoRa), as well as a sufficient compute power,
storage and connection to Cloud. The blockchain users
should trust the FS for:

• enrolment of new things to the block chain, and their
removal. At the point of enrolment, the Cloud
supplies to the FS confidential identity material for
the new thing which allows the FS to establish initial
credentials of the thing on the blockchain. It also
shares with the thing a symmetric key. Also note that
a modern IoT device is equipped with hardware
encryption facilities and can hold the key in
software-unreadable, immutable persistent memory
inside its Hardware Security Module (HSM).

• as part of the previous, supplying to a thing that joins
the blockchain late the authenticated hash of the
relevant blockchain history.

• withdrawal of a thing from the blockchain.

The FS is the actor that forms blocks for the blockchain
by gathering and validating SLVP protocol messages (see
the section “Posting on the blockchain”) from things and
outside agents (via Cloud) and collecting them into blocks.
No trust is required for this, since the FS processes mes-
sages received from things and agents on the basis of the
blockchain content, which is public and available to all
users. Any violation of the validation rules will be noticed
by the parties affected and any well equipped witness, i.e.
a (possibly non-enrolled) radio listening post.

2Whether the increased vulnerability to a pre-image attack is significant
depends on the application’s specific threat model. In most cases it is not,
since the attacker would only have a few minutes between the consecutive
blocks for the attack. For the avoidance of doubt, we do not demand the hash
size reduction, only suggesting it for resource optimisation. As a matter of
fact, our solution would accommodate a double-length hash, 512 bits, just as
easily should it become necessary.

What cannot be protected 100% reliably by our meth-
ods is progress. It is possible in principle for the FS to deny
service by refusing to react to valid, legitimate messages
sent by things, or by maliciously modifying the content of
thosemessages, if the FS is compromised. However, server
protection is not an issue of IoT security, but a general
cybersecurity concern, which is beyond the scope of this
paper.

Proxies This is yet another kind of zero-trust agent. It has
two functions:

1. Amplify the Sequencer’s radio broadcasts (by
constructive interference, if LoRa communications
are used, or by re-broadcasting broadcast messages).
All Proxies are sent PLS messages by the Sequencer
via the FS just before they are due to be broadcast.

2. Pick up messages from things directed to the
blockchain. This is useful because direct connection
to the FS over the air may not be possible given a low
power budget and compromise antennae that things
have to work with. All Proxies are connected to the
intranet and can forward messages to the server and
CAS. The blockchain posting protocol (SLVP), which
we will introduce in the next section, is robust:
Proxies can forward messages of unclear origin and
authority; at best they will be filtered out by the FS, at
worst they will find their way to the blockchain but
will not be properly signed by a legitimate actor and
hence will have no effect other than waste of
resources.

Since all Proxies are connected to the intranet, they can
perform function 1 above.

Communications The reader will have noticed that the
proposed architecture uses the combination of a ded-
icated radio channel for security-related data and a
general-purpose communication infrastructure, whether
wired or wireless, on which things may establish an
auxiliary channel. This is a deliberate choice for the fol-
lowing reasons.
The purpose of the dedicated radio channel is to ensure

by physical means the reliability of broadcast. The only
credible threat to the PLS protocol is a DoS attack whereby
one or more users of the network are prevented from get-
ting uncorrupted P, L or S messages sent by the Sequencer.
The architecture enables a volume transmission of these
messages, with the Sequencer radiating them at maxi-
mum legal power and the Proxies joining in by concurrent
transmission. We propose that the security radio chan-
nel is implemented via LoRa (Sentech Corporation 2019),
a Long Range spread-spectrum technology with many
remarkable properties.

Shafarenko Cybersecurity (2021) 4:4 Page 8 of 17

We exploit the fact that as a spread spectrum format,
LoRa benefits from concurrent transmissions, where two
or more signals carrying the same content under the same
modulation regime can be broadcast simultaneously from
different locations. Any receiver at whose location the sig-
nal of one transmitter exceeds the rest only by a factor of 2
(3dB) will not sense the others ((Liao et al. 2017) p.21436,
under “Capture Effect”, (Zhu et al. 2018)). This is due to
the Frequency Modulated (chirp) nature of LoRa, and is
well known as the capture effect in both communication
and FM broadcast industry (Leentvaar and Flint 1976).
The idea is to endow the Proxies with maximum legal

power transmission capabilities and to place them in such
a way that the communication range of each Proxy cap-
tures a certain structural unit on the premises, e.g. a floor
(or a building if it is small enough), to form a commu-
nication locus. Different loci are separated by distances
(as in the case of loci as individual buildings) or obsta-
cles (e.g. construction elements supporting a floor if the
loci belong to different floors). This was studied at length
in (Liao et al. 2017) (see p.21443 under “The Robustness
of CT-LoRa”). The distance is by itself quite an effective
dampener, as radio signals fade by 6db when the dis-
tance between transmitter and receiver is doubled, which
would ensure a more than sufficient power contrast for
the capture effect.
If properly deployed, the proposed architecture ensures

that an attacker can only deny LoRa communications to an
IoT node by radiating power far exceeding legal limits, or
by installing additional equipment on the premises in vio-
lation of physical security. In both cases a large proportion
of the IoT devices will remain unaffected by the attack.
They will be able to collect all versions of the security mes-
sages (including genuine ones and those coming from the
attacker) and exchange them between each other using an
unprotected network. Security protocols will then quickly
establish which versions are genuine.

Posting on the blockchain
It is tempting to use a protocol similar to what we
described in the section “Basic protocols” in order for an
IoT device to post transactions directly on the blockchain.
The advantage of a Guy Fawkes type protocol (which we
will call a GF protocol for short) is that any secrets are
short-lived, the calculations basic and post-quantum, and
communications modest. However the principle vulner-
ability of such a protocol is its inherent reliance on the
precedence of events. With PLS we used wall-clock time
to separate intervals; wall-clock time with a reasonable
accuracy (less than tens of seconds drift over a year) is
cheap and available to even the tiniest of IoT platforms.
However, a thing does not generally need to post a trans-
action on each block of the blockchain, and it is often
quite expensive for it to do so from the energy perspec-

tive. Precedence can easily be established if the protocol
publishes messages on the ledger using an ideal com-
munication environment, where all messages reach their
destination and all can be published in the interval that
they were emitted. Which is far from reality in the IoT
world.

Jam-spoof attack. With Sequencer broadcasting mes-
sages for all users without exception, having maximum
legal transmission power and being further supported by
Proxies, one can guaranteemessage delivery (possibly sev-
eral unauthenticated versions, but that is no problem)
either directly, or via subsequent exchanges between users
before the interval is over. When a thing sends its content
to the FS, the content is of no interest to the peers and
the resources available for delivering it are quite limited. If
the thing posts on the chain infrequently, at unpredictable
times, any GF protocol based on imperfect communica-
tion is potentially vulnerable to the jam-spoof attack (see
the section “Original GFP”) as follows:
(below T is a thing andM is an attacker)

1. T runs the protocol to the point where it is about to
reveal to a verifier the so far confidential pre-image to
prove a signature (a key feature of any GF protocol)

2. M suppresses the verifier’s receiver by jamming the
broadcast channel. At the same time M uses a high-
gain directional antenna and sophisticated signal
reconstruction techniques beyond the capabilities of
the verifier to reliably receive the message from T. As
a result M learns the secret, but the verifier is left
believing that the secret has not been revealed yet.

3. M masquerading as T proceeds to publish its link-
and proof-records based on the knowledge of the
secret pre-image. The link-message will use a
different next nonce than the genuine link-message
from T published on the blockchain earlier, but the
same current nonce, thus forking T’s GF sequence.
Also the knowledge of both nonces enables M to
post its own signature message on the blockchain to
sign an arbitrary hash on behalf of T and to continue
to do so indefinitely.

4. T sees the split of its sequence on the blockchain and
alerts the FS, but now the FS (or any other arbitrator)
is unable, based solely on the blockchain content, to
determine whether it is T or M that is the genuine
originator of the latest messages.

Two remedies are available. One is to require authenti-
cation of all messages from a thing to the FS. This imme-
diately destroys the zero trust environment we have built,
where the only aspect that all users, including the FS itself,
have to trust is the correct operation of the Sequencer. We
wish to implement a GF protocol that does not require
additional trust and which survives a jam-spoof attack. It

Shafarenko Cybersecurity (2021) 4:4 Page 9 of 17

Table 2 SLVP Protocol

Block Transmit Verification BC Action

i0 P1 = H(N1) Out of Band (Enrolment)

i1 S1 = EN1 (H(M1) ⊕ H(N2))

i2 L1||V1 = H(N2) ⊕ N1 ||H(H(N2)||N1)

...

in Pk = H(Nk) ... post Pk

in+1 Sk = ENk (H(Mk) ⊕ H(Nk+1))

in+2 Lk||Vk = H(Nk+1) ⊕ Nk ||H(H(Nk+1)||Nk)

in+3 Pk+1 = H(Nk+1) Fetch latest P = Pk from block B = in

Set failed=true

for LV : B < #(LV) < in+3

if H(L ⊕ Pk+1) �= P, continue

set N = L ⊕ Pk+1

if H(Pk+1||N) = V

failed=false; break

if failed, exit ignore Pk+1

for L′V ′ : B < #(L′V ′) < #(LV)

if V ′ = H(L′ ⊕ N||N), exit ignore Pk+1

for all S: B < #(S) < #(LV)

determine HM = DN S ⊕ Pk+1

send to CAS: (k, UID,HM ,α(LV),α(S)) post Pk+1

exit

Assume bitwise exclusive-or ⊕ to have a higher priority than concatenation ||. #(x) is the number of the block in which record x is located, and α(x) is the record’s unique ID
(address). The sequence of block numbers is in strictly increasing order: i0 < i1 < i2 < ...

turns out that a small modification is sufficient to solve the
problem, which brings us to the following SLVP protocol,
see Table 2.

SLVP protocol
A new blockchain user is enrolled by the Fog Server3
by authenticating the user’s first P-record out of band.
Assume that the user sends that record to the blockchain
(i.e. to the FS in the first place) and it appears in some
block i0.
All records on the blockchain carry a UID, i.e. the User

IDentification, stated by the message originator. We pro-
pose that the user is identified by the first two bytes of its
P1 record. The server will not accept the P1 message if it
determines that the first two bytes of the hash clash with
an already established user. On the other hand, 2 bytes are
sufficient for an excess of 64 thousand users, while a typ-
ical IoT swarm does not exceed4 1000. In the sequel we
will not distinguish between a UID and the user with that
UID, if the context is clear enough to see which of the two
we mean.
3this makes it a permissioned blockchain
4There is some evidence that 1000 nodes could saturate the IoT long-range
joint channel capacity (Haxhibeqiri et al. 2017)

The table in Table 2 presents the protocol from the
point of view of a single UID and the FS. Other UIDs
will conduct themselves in the same way. Like the PLS
protocol introduced earlier, the SLVP protocol is invoked
periodically, but now at some arbitrary times, which in
terms of the blockchain schedule correspond to block
intervals. The transmitting thing does not need a specific
confirmation that the message has been received; it simply
checks newly formed blocks to find the record that it has
transmitted. When this happens, the thing sends the next
message according to the protocol. If a legitimate trans-
mitter’s correct message is not posted on the blockchain
after it has been transmitted, it either wasn’t received at
all, or it was received distorted. Either way the thing will
re-send the message until it is posted on the blockchain
intact.
The protocol proceeds in rounds, each consisting in

three steps:

S → LV → P

where S is, as before, the signature record, LV is an
extended link-verify record, and P is the proof record as
before. The LV record consists of the L-record, similar to
that of the PLS protocol, and a V -record for thwarting

Shafarenko Cybersecurity (2021) 4:4 Page 10 of 17

the jam-spoof attack. Since the UID is not authenticated
and the channel generally lacks integrity, any messages
received by the blockchain can be arbitrarily distorted.
The SLVP protocol depends on things’ ability to receive

blocks on the blockchain successfully via the PLS protocol.
Unlike the Sequencer engaging in timed broadcasts, an
SLVP user can be quiescent for many block periods. The
new round k starts after the user’s Pk message has been
received by the FS, validated and posted on the blockchain
in some block in. Which block this is going to be depends
on the timing of the Pk message. The user, having satisfied
itself that its message Pk was received and posted under its
UID, sends the S-message Sk and waits for it to get posted,
too, say in block in+1 > in.
Having satisfied itself that the Sk has been posted on the

blockchain, the user transmits its LV -message.
Themessage Pk+1 is sent in some later block period in+3

to finish the current round. The FS verifies the message
using the verification procedure in the middle column of
the table in Table 2. If verification succeeds, the new P-
record is posted.
Next the FS will decipher all S-records posted after

block in under the user’s UID by computing

HM = Pk+1 ⊕ DPk+1⊕LS .

Each record r on the blockchain has its address α(r) =
(ir , lr), where ir is the block number in which r is located
and lr is the sequential number of r among the records of
the same type and under the same UID in block ir .
For each record S in the current round k, the FS collects

proof data in the following form:

WS = (k, UID,HM,α(LV),α(S))

and instructs the CAS unit to store WS under H(WS) as
usual. The CAS unit will use HM as a trigger. When/if the
user UID stores content c in CAS, such that H(c) = HM,
the CAS manager will post a special C-record, on the
blockchain on behalf of UID as follows:

C = UID : (HM,H(WS))

which serves as blockchain confirmation that CAS has
taken charge of the content file as well as the proof data
for it for any witness to verify. Triggers that are not trig-
gered by the user over a certain number of blocks (large
enough to conclude that the original S-message was coun-
terfeit/distorted) are removed from CAS and entered into
the FS security log. A C-message will be ignored (and the
corresponding C-record not posted) if a trigger for it has
not been provided by the FS at the time of submission.

Security analysis of SLVP
An S-message does not expose a single bit of the nonces
Nk and Nk+1 since the value Sk depends on yet undis-
closed H(Mk) and since there does not exist an attack on
the cipher E where neither the key nor the plaintext is
known. Sometimes it is convenient for the user to post
more than one S-record, for example when several docu-
ments are to be signed by the same user but they are not
otherwise related. The user is allowed to send as many
different S-messages as necessary.
For an LV -message, the link part, L is the same as that

in PLS, and it serves the same purpose: its value links the
current nonce Nk with the new one, Nk+1. The verify part
V is there to make sure that an attacker who learns Nk
later cannot combine it with its own N̂k+1 and post

L̂k = H(N̂k+1) ⊕ Nk

on the blockchain. In such a case the FS would be unable
to decide between Lk and L̂k due to the fact that Lk can be
a distorted version of L̂k , and the message L̂k an attempt
to correct the distortion. With the V message in place, for
any pair of LV -records:

Lk||Vk = H(Nk+1) ⊕ Nk ||H(H(Nk+1)||Nk)

and

L̂k||V̂k = H(N̂k+1) ⊕ Nk ||H(H(N̂k+1)||Nk) ,

where

H(Lk ⊕ Pk+1) = H(L̂k ⊕ Pk+1) = Pk ,

the one posted in an earlier block wins: the protocol-
compliant user does not disclose the genuine Pk+1 =
H(Nk+1) in the same block as Lk||Vk and so the fact that

Vk = H(Pk+1||Lk ⊕ Pk+1)

proves that the originator knew H(Nk+1) before it was
posted. The only actor that knows H(Nk+1) before it is
posted is the genuine user.
Notice that no matter how many counterfeit LV mes-

sages have been posted by attackers since the last verified
P and no matter how many counterfeit P-records are sent
after them, only one P record will be accepted and posted
by the FS in any round of the protocol on behalf of any
given UID. Also the FS will find only one LV -record to
be valid, which is the earliest LV -record compatible with
both the previous and the newly validated P-record.
Counterfeit S-messages pose no threat. They will be

deciphered to an unpredictableHM, and an attacker would
not be able to provide content that matches a given hash
value anymore than it is able to find a nonce N given
H(N), the latter being the main security assumption for
any GF protocol.

Shafarenko Cybersecurity (2021) 4:4 Page 11 of 17

Enrolment and optimisations
It has been mentioned earlier that the very first hash P1 of
the protocols is validated out of band. For a user to be able
to start SLVP there are two requirements:

• access to the blockchain which includes out of band
validation of the latest Pk and all previous blocks
from 1 to k − 1, inclusively

• registration of the user’s P1 for out of band validation.

Enrolment of new equipment normally requires a
human administrator as it involves physical placement,
configuration and initialisation of the item according to
the business objectives. We propose the following enrol-
ment protocol:

1. The administrator’s workstation establishes secure
confidential communication with the FS using Cloud
and state of the art security. The FS shares a fresh key
K with the administrator.

2. The new thing that the administrator has ascertained
to be genuine

(a) receives K and the Sequencer’s latest Pk using
near-field communications (NFC) or similar,

(b) generates N1 and another random nonce N∗
(c) computes P1 = H(N1)
(d) sends Q = P1||EK (P1 ⊕ N∗) back to the server

via the administrator’s NFC port acting as a
relay.

3. The FS examines a short prefix of P1, π(P1), e.g. 2
bytes, and checks that no UID with this value has
been enrolled. If that is the case, the server computes
N∗ from Q and responds with ACK = H(N∗)
otherwise the response is FAIL.

4. If the response is FAIL, the thing generates a new
pair N1 and N∗ and repeats steps 2 and 3. Otherwise

(a) the thing verifies that ACK = H(N∗) and
notes its new UID, i.e. π(P1)

(b) confirms completion to the administrator.

If ACK �= H(N∗) the protocol fails; a notification to
this effect quoting P1,N∗ and ACK is sent to the
administrator for subsequent analysis.

Now the new IoT device is ready to receive the mini-
mumdata necessary to access the blockchain. The amount
of trust required for it is exactly the same as it is for
any other user: it needs to authenticate the latest Pk , the
only difference being that for the devices that have been
present from the start the index k = 1. But how is it going
to authenticate the blocks that were formed before block
k?

Merkle tree. To describe our proposed solution we need
to remind the reader the idea behind theMerkle tree first.

Fig. 2 An example of the Merkele tree

The Merkle tree is a tree in which every leaf node is
labelled with the cryptographic hash of a data block, and
every non-leaf node is labelled with the cryptographic
hash of the labels of its child nodes. See Fig. 2 for an
example.
Based on the same fundamental hardness of finding a

second pre-image, it can be concluded that if the top-level
label is authenticated reliably, then no further node of the
tree needs to be. Indeed, it is cryptographically hard to
change, for example, the data block a without changing
the label A, and if A changes, the value of X and con-
sequently T will become invalid. So one hash value is
sufficient to authenticate the whole data structure. At first
glance, the tree seems to be an unnecessary complication,
since the hash of a, b, and c alone, h(a, b, c) would be
sufficient to assure the integrity of all three items. How-
ever, the advantage of the Merkle tree is that it allows
one to access just the items that one wants. For instance,
to access a, one does not have to read b and c; all that’s
required is to read nodes T, X and A. The amount of data
retrieved will be |a| + 5|h|, where the vertical bars denote
the item size5. Without the Merkle tree, in the case of
a single hash controlling a, b and c, the retriever would
have to read b and c and compute the hash to assure the
integrity of a, even when the contents of data blocks b and
c are of no interest. Since items can be of an unlimited
size and the hash size is limited and small, the Merkle tree
offers a clear advantage in both communication and hash
calculation costs. Now let us proceed to our proposed data
structure.

Merkle forest. We propose to communicate the Merkle
minimal forest roots of the current state in each
blockchain block. The roots are a compact collection of
root hashes that can be followed onCAS to securely access
any block from B1 to current stored in CAS. To illustrate
the concept, let us imagine a block sequence from block 1
(initial) to block 7 (current), see Fig. 3. For simplicity we
use a binary Merkle tree, in which every non-leaf node
5the label of a node is not stored at the node (except for the top node). The
retriever will read T, X, C (and verify that T = h(X,C)) from the top node, A
and B from node X and finally a from node A, which works out as 5 hash
lengths plus the length of a.

Shafarenko Cybersecurity (2021) 4:4 Page 12 of 17

is composed of the hashes of the two child nodes’ con-
tents. Some of the nodes are already formed and will never
change (shaded in the figure), and some are still being
formed pending the future blocks. It is easy to see that the
Merkle proof of any block up to and including 7 requires
only hashes of node 4321, 65, and 7 as roots, the paths of
every leaf from 1 to 7 is rooted at one of them. Notice that
the binary representation of 7 is 111 which corresponds
to one node each at levels 0,1 and 2. For block 5=1012
we would have a level-2 block and a level-0 block, which
agrees with the diagram.
A binary Merkle tree is unjustifiably deep. Focusing on

the world of the IoT, we recognise that communications
are typically limited to messages no longer than 200–250
bytes, so given a typical hash size of 32 bytes, it is con-
venient to use a quad-tree, which will be much less deep.
For a quad tree in a blockchain of say, 1 mln blocks (at one
block per 15 min, this gives us more than 10 years’ run-
ning), we get log4 106 ≈ 10, which means that the server
only needs to authenticate at most 10 hashes to give a new
IoT thing a secure start. For every k the record consisting
of the minimal root set

�(k) = (r1, ..., rp)

is computed and stored by the FS under γk = H(�(k)) in
CAS, where k is the current block number, and r1, . . . , rp
are the Merkle tree hashes that correspond to the nonzero
digits in the base-4 representation of the number k.
For each k, the FS will put γk at the beginning of block

k + 1. Any user that wishes to trade storage for CAS
communication, or a new user who has missed an initial
segment of the block chain, but who trusts the latest Pk
can use the γ -record on the block to securely retrieve any
preceding block(s) via CAS, if they choose to trust the FS.
We would like to remark that the FS in this particular case

is trustworthy, since the γ record can be computed by any
full witness of the blockchain (i.e. any user that has been
present since block 1) and if the FS is compromised, the
proof of that will be constructed immediately.
Regarding the storage requirement in CAS, they are

minimal. Summing up the geometric series for the radix-
4 Merkle tree with depth 10, we get circa 350,000 hashes
to store for 106 blocks, about 10Mb, a trivial amount of
storage.

Countermeasures against DoS
The acquisition of a shared secret between the thing and
the FS at the point of enrolment does not make the
blockchain any less useful. Indeed, in our threat model
the FS is not trusted by any enrolled user any more than
any other user of the blockchain, so the shared secret
cannot be used to replace the security protocols that
make the blocks of the blockchain an immutable, ordered,
authenticated sequence of records. Nor is it any good
for non-repudiation. However, just as the Sequencer is
trusted to keep its secret for the avoidance of blockchain
split so is the FS trusted to be interested in reducing the
amount of noise on the blockchain, i.e. records sent in by
an attacker on behalf of a genuine UID, which will even-
tually be caught out and eliminated by the SLVP protocol.
After all, as the FS is solely responsible for what does and
what does not get posted, the proposed blockchain con-
cept only works on the assumption that the FS itself is
not and can never be behind a DoS attack. The assump-
tion that the FS will be a willing party to an additional
noise-reduction protocol does not add much to that.
With this in mind we propose that each thing uses a

very short Message Authentication Code (MAC) based
on symmetric encryption and the shared key K received
upon enrolment. The MAC need not be longer than

Fig. 3Merkle forest

Shafarenko Cybersecurity (2021) 4:4 Page 13 of 17

2 bytes (possibly even 1 byte) and can be computed
using standard techniques by the thing’s hardware secu-
rity module or crypto accelerator. The MAC is computed
for each message of the SLVP protocol sent to the server
as well as the content messages sent via the FS to CAS.
Due to the shortness of the MAC, the exposure of the
shared key is minimal, obviating session keys. If the MAC
does not match, the FS ignores the message. With a 2-byte
MAC, an attacker would have to send tens of thousands
of messages to get through to the FS in the first instance;
such a volume on behalf of a single IoT user will surely
raise the alarm, resulting in the intruder’s triangulation
and suppression.
Recall that the Sequencer’s messages may arrive dis-

torted or not arrive at all, and the users, especially things,
must talk to each other to collect a set of versions for
each PLS message to ensure that the set contains the
original. To facilitate this, a short authenticator can be
sent by a Proxy on an auxiliary channel to each thing by
transmitting

u = UID‖cat‖π(H(M))

where UID is its User ID, π(H(M)) is a short hash of mes-
sage M from the category cat (one of P, L, or S). Message
u is extended with MACK (u), where K is the key agreed
with UID at enrolment. The message u is prepared by the
server and is forwarded by one or more of the Proxies on
the auxiliary channel. User UID, having received u and
checked theMAC, recalculates π(H(M)) based on the lat-
est message in category cat received (if it did at all) and
compares it with the value contained in u. If they match,
the device joins a re-broadcast concurrent-transmission
group on a pre-arranged channel (frequency and time rel-
ative to the start of the Sequencer broadcast interval) to
help nearby nodes with PLS reception. Given that PLS
messages are short (notmuch longer than 32 bytes if SHA-
256 is used for H(·)) and infrequent (3 messages typically
2–5 times per hour, 0.5 KB/hour), a blockchain supported
thing can afford to transmit as much to help other things
(which in turn will help it) to survive a DoS attack.
When it comes to the SLVP protocol, the user is the

active transmitter, and the roles are reversed. Now as a
DoS resilience measure, the user UID adds a MACK (x) to
every message x that it sends to the server (possibly via a
Proxy) for posting on the blockchain. The FS checks the
MAC based on the received UID and the shared keyK and
if the MAC does not match, it ignores x. Again, we must
stress that if the MAC does match, this means nothing in
terms of the SLVP protocol, since the FS does not trust the
thing any more than the thing trusts the FS. Reduction of
noise is their common concern: the FS acts on behalf of
the owner of the IoT network and is interested in suppres-
sion of a DoS attacker, and the thing will keep its shared K
secret to avoid an attacker’s spoofing it and preventing its

legitimate messages from reaching the blockchain. Com-
monality of concern is the only reason why the additional
authentication will be effective.

Emergencymode
A distinguishing feature of IoT is its multiplicity of
time scales. Most things require only infrequent interac-
tion with the outside world, reporting sensor readings,
receiving parameter updates and possibly code upgrades.
All these activities are easily accommodated by the
blockchain mechanism and are protected by its inherent
security properties. A major downside of a blockchain
is its latency. No matter how frequently new blocks are
added to the chain (and in our case they are not even
mined), a thing may find itself in a situation when it must
raise the alarm with its master sooner than a new block
can be published, especially since in the case of the PLS
blockchain, blocks are published on a fixed wall-clock
schedule. Even if a new block is to emerge soon, there is
no guarantee that any given thing will be able to post its
message in it rather than in a later block.
This problem is quite practical: a hospital monitor

detecting a catastrophic change in a patient’s condition
and a nuclear plant’s sensor detecting a reactor malfunc-
tioning are cases in point to name but two. We emphasise
that emergency messages are not an alternative of post-
ing records on the blockchain. The latter is more powerful
in that things are able to securely interact with each other
directly via their signed blockchain messages, whereas
emergency communications are processed solely at the FS
for off-chain delivery outside the IoT network.
One might think that emergency communications can

be supported by the shared key K that the originating
thing agreed at enrolment. Indeed the FS can request a
full MAC and satisfy itself that the message is authentic.
However, this is not enough. Emergency communications
involve rapid response and that can only be provided
if an independent arbitrator can establish that the mes-
sage was sent by no-one but the claimed originator. In
other words, a signature rather than mere authentica-
tion is required. In the absence of signature, the response
agent would be running the risk of the originator repu-
diating the message: after all, the symmetric key K is
shared with the FS, and so either the FS or an agent to
which the FS has leaked the key (willingly or not) might
have sent the emergency message instead of the legitimate
user.
Non-repudiation is not a concern with blockchain com-

munications, they cannot be repudiated thanks to the
properties of the SLVP protocol. However, post hoc val-
idation by blockchain is only useful for confirmation
of valid messages, rather than proving a message to be
invalid, since the rapid response must come into effect
before blockchain validation may take place. The other

Shafarenko Cybersecurity (2021) 4:4 Page 14 of 17

way6 of ensuring non-repudiation is by One–Time Signa-
ture (OTS), which we will consider next.

OTS
OTSs are known to have a very large “public key”, i.e.
authenticated public data used for validation of a signa-
ture. In the original OTS proposed by Lamport (Lamport
1979), the originator shares with the verifier k pairs

(H(n1),H(N1)), (H(n2),H(N2)), . . . , (H(nk),H(Nk)) ,

where all ni, Ni are random nonces. To sign a k-bit mes-
sage {xi}, the originator additionally supplies k values
{si}:

si =
{
ni if xi = 0
Ni otherwise

OTSs solve the problem of emergency non-repudiation
if the public key is signed and posted on the blockchain in
advance (using SLVP), but the price for an IoT device using
it is prohibitive. A straightforward application of OTS to
signing a full hash of an emergencymessage would require
256 × 256 × 2 = 128K bits of public key, or 16KB. It is
easy to see that the public key can only be used once if
we want the security of hash pre-image to work for every
bit of a signed message. Even if using the large key once
were acceptable (think of catastrophic circumstances that
do not present themselves often), the signature size would
also be prohibitive: half the key size, or 8KB in this case.
This would take some time to communicate over a low
bit-rate channel, especially in the presence of transmission
errors necessitating a re-transmission.

Public key
Let us start with the public key problem. We propose to
bring the SLVP protocol messages to bear on the emer-
gency mode to eliminate transmission and authentication
of the public key. Recall that a thing running the protocol
sends messages that depend on nonces Nk which are cho-
sen by it at random, see Table 2. At the validation step, the
FS computes N̂k = Lk ⊕ Pk+1 and verifies that N̂k = Nk
by applying H(·) to both sides and checking the equality.
We propose that every thing engaging in SLVP must

compute random nonces Nk by building a hash chain:

Nk = N [α]
k

N [i]
k = H(N [i−1]

k)where i = 1, . . . ,α ,

and whereN [0]
k is completely random and is kept secret by

the thing for at least α rounds of the protocol.
In other words, every nonce is an image of a random

number under α applications of H(·), which is known as
the Winternitz chain. When the server has posted the
6Our design constraint 1, Post Quantum, prevents standard public-key
cryptography, which would provide an effective signature if the originator’s
public key is validated in advance on the blockchain

value Pk it received from the thing, it has access to, and has
verified,

N [α]
i for all i = 0, . . . , k − 1

For a given UID, the private key for the period between
the postings of Pk and Pk+1 (i.e. when nonces up to and
including Nk−1 have been revealed) is as follows:

{N [α−i−1]
k−i } for i = 1, . . . ,α − 1 .

If Lamport’s OTS is used, the thing sends to the FS a
selection of the valuesN [α−i−1]

k−i . The FS verifies each value
by applyingH(·) to it i+ 1 times and comparing the result
with N [α]

k−i = Nk−i that it has received from the same UID
by SLVP protocol. Notice that as k advances to k+1 with a
new round of SLVP, the same chainNk−i is used for public
key with an earlier pre-image:

N [α−i]
k−i → N [α−(i+1)]

(k+1)−(i+1)

until the protocol is α rounds ahead of the chain at which
point the chain will have been fully used and is no longer
required for OTS purposes. An example of α = 3 is dis-
played in Fig. 4, showing two consecutive rounds. Notice
that the values used in a later round are always lower on
their Winternitz chain than those in earlier rounds, mak-
ing them secure within the second pre-image hardness
assumption.
We conclude that the “private key” for an SLVP round,

i.e. the set of potential pre-images to be used for OTS, is
unknown to the FS in that round and that the FS has access
to the authenticated public key to verify the signature.
This arrangement of chains and pre-images makes it

possible for a thing running SLVP not to share any public
key at all and at the same time be able to sign messages in
emergency mode without waiting for blocks to appear on
the blockchain. It is quite useful for the IoT world, and the

Fig. 4 Use of Winternitz chains for OTS private key production from
SLVP nonces at round k (red) and k + 1 (blue) for α = 3. NB: N[3]

i = Ni

so the top row is shown without superscripts. Vertical arrows signify
application of H(·)

Shafarenko Cybersecurity (2021) 4:4 Page 15 of 17

price that we pay is the need to pre-hash a random string
α times at every round of the SLVP protocol rather than
use it directly as a nonce. Taking a popular ESP32 system-
on-chip as a specific example we learn from (Espressif
Systems 2020) that it takes ∼ 1μs at full power to pro-
cess one AES256 hash block, perhaps 0.1ms for α = 100.
The energy spent is a fraction of the (LoRa) communica-
tion cost for the same. It is completely justified if the thing
potentially requires emergency communications in this or
any of the future α rounds, assuming that it is sufficient to
sign a certain number of bits L of the emergency message
(or its digest) to reassure the responder of nonrepudiation.
For Lamport’s classical OTS signature, L = α/2. We will
improve on this next.

GF-HORS
The excessive size of OTS signatures have been recognised
by many authors, and several proposals have been made
to improve on it. We follow the methodology presented in
(Reyzin and Reyzin 2002), where an original idea, Hash to
Obtain a Random Subset (HORS), was first put forward.
Assume that α is a power of 2. Compute a length-L

digest of the message to be signed, and partition its binary
representation into slices log2 α bits long. Interpret these
slices as unsigned numbers

σj, j = 0, . . . ,
L

log2 α
− 1 .

where all σj < α. Now for each j the thing supplies the
value N [α−σj−1]

k−σj
to form a signature. The FS validates the

signature by recomputing the digest of the message, then
recomputing {σj} from the digest, and then for each j ver-
ifying N [α−σj−1]

k−σj
by applying H(·) to it σj + 1 times and

checking that the result equals the previously obtained
nonce Nk−σj .
The idea to use the digest of the message to be signed

rather than the actual bits of it by partitioning the string
was first proposed in (Reyzin and Reyzin 2002), and the
security of this method is slightly less than that of the
second pre-image hardness, since here the attacker only
needs to find amessage whose digest partitioned into suit-
able chunks gives the same set or even a subset of {σj}
in any order. However, the authors of (Reyzin and Reyzin
2002) remark that finding a (useful) message that has the
same set or a subset of digest chunks as a given one is still
computationally hard for a good digest.
We propose a GF-HORS signature (HORS signature

with SLVP-derived public key) based on a keyedMACwith
the shared key K as the digest. TheMAC protects themes-
sage being signed from an outside forgery, and the HORS
signature protects it from an insider job. Let us take a look
at some example numbers to illustrate the efficiency of the
scheme.

If we assume α = 64 and use AES-128 for the digest
MAC (shortening it down to 126), we get up to 21 sig-
mas. Assuming for estimation purposes that the digest
is a random bit string, the probability that an attacker’s
digest gives a subset of the sigmas, is less than (21/64)21,
around 10−10, a pretty good result for an IoT device non-
repudiation. The communication cost of the signature is
256 × 21/8 = 672 bytes, about three messages on LoRa.
Recall that we require three shorter messages (around 128
bytes all together) for an SLVP round, which is in the same
order of magnitude.
A final remark. When a thing is first enrolled by the

server, there is not enough nonces in its history (in fact
there aren’t any initially) for the formation of the pub-
lic key. One remedy could be to produce α nonce chains
at enrolment and share α chain-ends with the FS at that
point. Another solution is to consider the first α SLVP
rounds of a new thing a probationary period, when it is
being tested and adapted to its environment and when it is
not allowed to participate in emergency communications.

Related work
The advantages of blockchain technology in the case of
IoT are not clearly articulated in literature. Recent sur-
veys (Kouicem et al. 2018), (Wang et al. 2019) recognise
blockchain as a disruptive technology for the IoT, and list
the benefits in generic terms:

• Decentralisation: Distributed Ledger Technology is
supposed to be more robust and secure against a
single point of failure.

• Pseudonymity: the ability to enrol a new actor by
registering its public key (or public hash, in our case)

• Security of Transactions. This boils down to the
immutability of the ledger.

This is matched with a plethora of use cases mentioned
in (Kouicem et al. 2018), see pp. 212–214. However, none
of the bullet points is specific for the IoT.
We find our objectives to be close to those of (Dorri

et al. 2017), and that paper is a good illustration of how
different our approach is from the direction inspired by
the typical assumptions. The authors of (Dorri et al. 2017)
assume, like others (see, for example, (Danzi et al. 2019)),
that an individual IoT device is likely to be underpowered
for managing blockchain transactions directly, as it does
not have the storage space, communication bandwidth or
processing power for such a task.
As far as communications are concerned, article (Dorri

et al. 2017) correctly posits that low bit-rate radio chan-
nels, such as LoRa will be used. However it pays to
differentiate between communication of a small amount
of security-related data and unsecured, bulk public data
transfer.

Shafarenko Cybersecurity (2021) 4:4 Page 16 of 17

Storage-wise, to the best of our knowledge published
research assumes that the blockchain either has to be
stored at the IoT device itself (which is indeed expen-
sive), or else trust must exist between the device and any
storage server. The latter assumption is not necessarily
justified due to the availability of Content-Addressable
Storage (CAS), which is, by construction, self-certified
not requiring trust or secure communications. The idea
of CAS goes back to the late 1990’s paper (Crespo and
Garcia-Molina 1998) where it was proposed to use a file’s
CRC as its name, which is not quite satisfactory due to
massive aliasing, but a few years later paper (Quinlan and
Dorward 2002) suggested the cryptographic hashes of files
should serve as file names. In the last five years the lead-
ing general-purpose CAS project has been one known as
InterPlanetary File System (IPFS) (Benet 2014) and it is
widely used.
The original Guy-Fawkes protocol on which PLS is

based ((Anderson et al. 1998), p.12) requires four items
to be published in every round of the protocol, while PLS
only publishes three. Also, verification in a round of Guy
Fawkes requires a calculation that involves three items
to be hashed together, whereas PLS computes a hash of
one item of a minimum size, a factor of three saving on
the receive side. PLS performs a symmetric decryption to
obtain and confirm themessage (or, to be precise, themes-
sage hash), which Guy Fawkes does not need. However,
taking an example of ESP32 (Espressif Systems 2020) as
a popular system-on-chip for IoT with a crypto accelera-
tor, the AES-256 decryption calculation costs at most 22
clock cycles, while computing SHA-256 requires at least
60 clock cycles to process one block plus a minimum of
8 cycles to produce the digest. This means that a hash is
at least three times as expensive as the standard encryp-
tion. This is not surprising since the security of the hash
function depends solely on the diffusion properties of an
iterated mapping; to achieve good diffusion as many as 80
iterations are used (64 for a shorter hash). Whereas AES
encryption involves a key, which injects entropy in the
process consequently reducing the need for iterations (or
rounds as they are called in the area of symmetric ciphers)
from the diffusion point of view: only 10 or 12 rounds are
used. Modern accelerators have enough resources to per-
form data-independent calculations in parallel, so it is the
number of strictly sequential rounds (where the input of
one requires full valid output of another) that determines
the speed.
We conclude that PLS is both faster and less

communication-intensive at the receiver end. At the
transmitter end performance matters little, since the FS
and Sequencer are not on a tight energy budget.
We are aware of one prior attempt at using a GF proto-

col in conjunction with a blockchain: (Bonneau andMiller
2014). In that paper the blockchain itself is assumed to

be Bitcoin and a GF protocol is used only for signing
value transfer messages (i.e. transactions). The authors of
(Bonneau and Miller 2014) were aware of the jam-spoof
attack (which they call race-condition theft), but their
solution is partial, based on a time-out whereas the V -
messages in our SLVP protocol capture both pre-images,
the current and the next ones, to defeat the jam-spoof
attack without needing a time-out facility (but we still
require the “earlier LV message wins” analysis similar to
(Bonneau and Miller 2014)).
Repeated application of the hash function in order to

reduce the size of the public key was first suggested by
Winternitz according to Merkle (Merkle 1989). We are
not aware of any prior work on our proposed sliding win-
dow across Winternitz chains. We use the original HORS
(Reyzin and Reyzin 2002) procedure, but this has been
improved to HORST (Bernstein et al. 2015), which we can
also accommodate. HORST differs fromHORS by the fact
that the public key is stored in aMerkle tree, whose root is
authenticated in advance (at the cost of one round of the
SLVP protocol in our case). We prefer the original, HORS,
as it allows us to piggy-back the public key on the SLVP
nonce sequence by producing each nonce off the top of
an individual Winternitz chain with the bottom kept con-
fidential; as a result the user does not need to publish its
public key at all. Not only does it save us a round of SLVP,
it obviates communication of a large public key to CAS as
well. However, we recognise that HORST may be useful
for emergencymessages if the required long-term security
necessitates a much longer signature, in which case the
user must store a sufficiently large HORST Merkle tree in
CAS in advance and bear the risk of exposing the private
key, held inside an IoT device, to a physical intruder.

Conclusions
We have presented the architecture and protocol suite
for a permissioned blockchain construction based on
the Guy Fawkes family of protocols. Our construction
requires limited trust for one sealed, air-gapped unit we
call Sequencer, which is not internet-connected and which
is responsible for keeping a short-term secret. If the short-
term secret is kept, we show that this type of blockchain
will not split and will maintain immutability. The rest of
the network is untrusted.
We have proposed a protocol for posting signed mes-

sages on the blockchain without using public-key cryptog-
raphy and discussed its security. Finally, we have shown
how emergency (zero-latency) communications can coex-
ist with a PLS blockchain without requiring a public key,
yet maintaining nonrepudiation.
The main threat to the PLS blockchain is DoS attacks.

While those cannot be fully eliminated for a radio net-
work susceptible to jamming, we suggested the use of a
shared secret for non-physical DoS defence: reduction of

Shafarenko Cybersecurity (2021) 4:4 Page 17 of 17

the number of counterfeit regular and emergency mes-
sages accepted for analysis. The outcome of that analysis
does not depend on the security of the shared secret,
but the efficiency does. Our threat model assumes that
sustained physical and non-physical attacks will trigger
direction-finding and triangulation of the signal source,
eventually eliminating the threat. The advantages of our
proposed method are the following:

1. GF protocols are as convenient as public-key crypto,
without having to manage keys, perform costly
large-number computations on underpowered IoT
devices, or be exposed to quantum attacks.

2. things can validate each other’s transactions without
trusting third parties.

3. even though the blocks are not mined, passive
receivers of the authenticated block content (which
we call witnesses) that monitor radio
communications are able to detect wrongly accepted
records and raise an alarm without the owner (Fog
Server) being aware of the monitoring process.

4. validation proofs become objects in their own right,
stored in the same CAS structure as all other
blockchain records; they can be re-validated by any
witness of the blockchain at low cost based solely on
their content.

Future work will define mechanisms and protocols for
managing trust whereby a thing may delegate verification
of transactions to a blockchain witness.

Acknowledgement
Discussions with Bruce Christianson and his feedback are gratefully
acknowledged.

Authors’ contributions
The single author contributed 100%. The author read and approved the final
manuscript.

Funding
This work was supported in part by IMC corporation, Slovakia, under EU
project BRAINE (Grant 876967).

Availability of data andmaterials
None produced, none available.

Competing interests
The author declares that he has no competing interests

Received: 20 August 2020 Accepted: 16 December 2020

References
Anderson R, Bergadano F, Crispo B, Lee J-H, Manifavas C, Needham R (1998) A

new family of authentication protocols. SIGOPS Oper Syst Rev 32(4):9–20.
https://doi.org/10.1145/302350.302353

Benet J (2014) IPFS - Content Addressed, Versioned, P2P File System. arXiv
1407.3561. http://arxiv.org/abs/1407.3561. Accessed 15 Aug 2020

Bernstein DJ, Hopwood D, Hülsing A, Lange T, Niederhagen R,
Papachristodoulou L, Schneider M, Schwabe P, Wilcox-O’Hearn Z (2015)
Sphincs: Practical stateless hash-based signatures. In: Oswald E, Fischlin M

(eds). Advances in Cryptology – EUROCRYPT 2015. Springer, Berlin,
Heidelberg. pp 368–397

Bonneau J, Miller A (2014) Fawkescoin. In: Christianson B, Malcolm J, Matyáš V,
Švenda P, Stajano F, Anderson J (eds). Security Protocols XXII. Springer,
Cham. pp 350–358

Crespo A, Garcia-Molina H (1998) Archival storage for digital libraries. In:
Proceedings of the Third ACM Conference on Digital Libraries. Association
for Computing Machinery, New York. pp 69–78. https://doi.org/10.1145/
276675.276683

Danzi P, Kalør AE, Stefanovic C, Popovski P (2019) Delay and communication
tradeoffs for blockchain systems with lightweight iot clients. IEEE Internet
Things J 6(2):2354–2365

Dorri A, Kanhere SS, Jurdak R, Gauravaram P (2017) Blockchain for iot security
and privacy: The case study of a smart home. In: 2017 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerComWorkshops). IEEE, Piscataway. pp 618–623

Espressif Systems (2020) ESP32 Technical Reference Manual. Available as
https://www.espressif.com/sites/default/files/documentation/
esp32_technical_reference_manual_en.pdf. Accessed 15 Aug 2020

Haxhibeqiri J, Van den Abeele F, Moerman I, Hoebeke J (2017) Lora scalability:
A simulation model based on interference measurements. Sensors
2017:1193. https://doi.org/10.3390/s17061193

Kouicem DE, Bouabdallah A, Lakhlef H (2018) Internet of things security: A
top-down survey. Comput Netw 141:199–221

Lamport L (1979) Constructing digital signatures from a one-way function. Vol.
238. Technical Report CSL-98. Technical report

Leentvaar K, Flint J (1976) The capture effect in fm receivers. EEE Trans
Commun 24(5):531–539

Liao C, Zhu G, Kuwabara D, Suzuki M, Morikawa H (2017) Multi-Hop LoRa
Networks Enabled by Concurrent Transmission. IEEE Access 5:21430–21446

Merkle RC (1989) A certified digital signature. In: Proceedings on Advances in
Cryptology (CRYPTO ’89). Springer, Berlin, Heidelberg. pp 218–238

Quinlan S, Dorward S (2002) Venti: A new approach to archival storage. In:
FAST Vol. 2. pp 89–101

Reyzin L, Reyzin N (2002) Better than biba: Short one-time signatures with fast
signing and verifying. In: Batten L, Seberry J (eds). Information Security and
Privacy. Springer, Berlin, Heidelberg. pp 144–153

Sentech Corporation (2019) LoRa and LoRaWAN: A Technical Overview.
Technical report

Wang X, Zha X, Ni W, Liu RP, Guo YJ, Niu X, Zheng K (2019) Survey on
blockchain for internet of things. Comput Commun 136:10–29

Zhu G, Liao C, Suzuki M, Narusue Y, Morikawa H (2018) Evaluation of LoRa
receiver performance under co-technology interference. In: 2018 15th IEEE
Annual Consumer Communications Networking Conference (CCNC). IEEE,
Piscataway. pp 21430–21446

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1145/302350.302353
http://arxiv.org/abs/1407.3561
https://doi.org/10.1145/276675.276683
https://doi.org/10.1145/276675.276683
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://doi.org/10.3390/s17061193

	Abstract
	Keywords

	Introduction
	Motivation
	Challenge
	Contributions of the paper:
	Structure

	Basic protocols
	Original GFP
	Jam/spoof attack.
	DoS attack.

	PLS protocol
	Goal

	Security analysis of PLS
	Threat model.

	System architecture
	Sequencer
	CAS.
	Fog Server.
	Proxies
	Communications

	Posting on the blockchain
	Jam-spoof attack.
	SLVP protocol
	Security analysis of SLVP

	Enrolment and optimisations
	Merkle tree.
	Merkle forest.

	Countermeasures against DoS

	Emergency mode
	OTS
	Public key
	GF-HORS

	Related work
	Conclusions
	Acknowledgement
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

