IEEE Access

Multidisciplinary * Rapid Review * Open Access Joumal

Digital Object Identifier

Enabling P4 Network Telemetry in
Edge Micro Data Centers with
Kubernetes Orchestration

D. SCANO', A. GIORGETTI?3, F. PAOLUCCI}, A. SGAMBELLURI', J. CHAMMANARA*,
J. ROTHMAN?#, M. ALBADOS®, E. MARX®7, S. AHEARNES, F. CUGINE

'Scuola Superiore Sant’ Anna, Pisa, Italy

Institute of Electronics, Computers and Telecommunication Engineering, National Research Council (IEIIT-CNR), Pisa, Italy
xNational, Inter-University Consortium for Telecommunications (CNIT), Pisa, Italy

“Leibniz University, Hannover, Germany

*DELL, Ireland

Seccenca GmbH, Leipzig, Germany

TAKSW, Leipzig University of Applied Science (HTWK), Germany

Corresponding author: Davide Scano (e-mail: davide.scano @santannapisa.it)

D. Scano and A. Giorgetti contributed equally to this work. This work has been partially supported by the BRAINE Project, funded by

ECSEL Joint Undertaking under grant agreement No. 876967.

ABSTRACT The integration of IT and networking technologies is a hot research topic targeting the
optimization of container deployment on a set of host machines interconnected by a network infrastructure.
Particularly, next-generation edge nodes will offer significant advantages leveraging on integrated IT and
networking awareness, enabling configurable, granular and monitorable quality of service to different micro-
services, applications and tenants, especially in terms of bounded end-to-end latency. In this regard, SDN is
a key technology enabling network telemetry and traffic switching with the granularity of the single network
flow. However, currently available solutions are based on legacy SDN techniques and thus require a tricky
integration inside the hosts where containers are deployed.

This work considers Kubernetes clusters deployed on next-generation edge micro data center platforms
and proposes an innovative SDN solution exploiting the P4 technology to gain visibility inside tunnelled
traffic exchanged among pods. This way, the integration is achieved at the control plane level through
the communication between Kubernetes and the SDN controller. The proposed solution is experimentally
validated including a comprehensive framework enabling effective traffic switching and in-band telemetry
at the pod level.

The major paper contributions consist in the design and the development of: (i) the networking applications
at SDN control plane level; (ii) the P4 switch pipeline at the data plane level; (iii) the monitoring system

used to collect, aggregate and elaborate the telemetry data.

INDEX TERMS SDN, P4, Telemetry, Micro Data Center, Kubernetes.

I. INTRODUCTION

HE relation between computation and networking tech-

nologies has become stronger and stronger especially
in the cloud environment where each application is a com-
position of micro-services potentially running on different
machines [1], [2]. Moreover, since the services are moving
toward the network edge (e.g., due to stringent latency re-
quirements), where limited resources are typically available,
the joint optimization of computational and networking re-
sources is currently a crucial challenge [3], [4]. To solve this
issue both centralized and distributed approaches have been
proposed in literature [5].

VOLUME X, YEAR

Focusing on computational resources orchestration, Ku-
bernetes has recently become the de-facto framework to
orchestrate containers in both data-centers and edge-cloud
environments [6]. Kubernetes is built on the concept of pod
(i.e., a deployment unit) consisting of one or more containers
running on the same host machine. Only high level indi-
cations are provided by the Kubernetes community about
the way in which pod networking should be implemented,
i.e., regarding pod-to-pod communication the only specified
requirement is that each pod can communicate with all other
pods on any other node without NAT [7]. However, the

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

actual networking implementation is delegated to third-party
plugins, i.e., the Container Network Interface (CNI) plugins,
which may adopt different configuration of the pods network
interfaces for providing pod-to-pod connectivity (e.g., adopt-
ing different tunneling technologies). Moreover, CNI plugins
typically do not account for network constraints in terms,
for example, of required bandwidth or bounded latency. For
this reason, deploying Kubernetes in edge computing envi-
ronments requires specifically designed and comprehensive
solutions able to provide flexible network control and traffic
telemetry. This is especially true in the case QoS-critical
applications have to be supported and the cluster machines
are distributed at different locations, e.g., over a metropolitan
area network [8], [9].

The introduction of Software Defined Networking (SDN)
provided the opportunity to enable effective networking re-
sources control. Nowadays P4 (i.e., Programming Protocol-
Independent Packet Processors) is the SDN solution en-
abling the most advanced programmability of the forward-
ing plane [10], also enabling innovative in-network function
offloading [11]. P4 provides many additional features with
respect to previous SDN solutions (e.g., OpenFlow [12]):
(1) it defines a standard language to specify custom data
plane pipelines; (2) it allows to define and manipulate custom
packet headers through the definition of dedicated packet
parsers; (3) it supports the utilization of registers enabling
the development of stateful functionalities. Moreover, P4
is supported by several kind of targets, e.g., bare metal or
software switches, smart-NICs, NetFPGAs. Thus, P4 enables
advanced traffic telemetry in passive mode, with no need of
dedicated probing packets. Three different techniques of In-
band Network Telemetry (INT) are proposed in the specifica-
tion [3], highlighting the main technical details. In the three
schemes, report packets are directly built in the data plane
and sent toward a telemetry collection point, that can be used
to perform the per-flow traffic analysis.

Considering all the aforementioned features, we believe
that P4 offers a flexible framework for enabling effective
integration of computational resources, orchestration tools
and networking resources. Recently, OpenFlow has been
considered for such integration [14]-[16]. However, since
OpenFlow cannot have visibility inside the tunnels created
by the CNI plugins, the proposed solutions require a deep
integration with the plugins at the data plane level, including
the installation of dedicated software applications on the
Kubernetes cluster. Conversely, exploiting P4 it is possible
to define dedicated packet parsers, gaining visibility on pod-
to-pod traffic flows inside the tunnels. This enables the de-
ployment of fine granularity traffic engineering and telemetry
techniques without direct interaction with the data plane of
the Kubernetes pod network. Thus, and this is our proposal,
the orchestration can be implemented through interactions at
the control plane level exploiting proper interfaces between
Kubernetes and the SDN controller.

To achieve the aforementioned targets, P4 devices should
be effectively controlled by the SDN controller. Regarding

2

this point, the P4 consortium defined an interface called
P4Runtime [17], suitable to configure and control P4 devices
(e.g., to install pipelines and flow rules). However, in the real
world, P4 compatible devices do not mandatory include a
P4Runtime agent. Indeed, several P4 use-cases do not rely
on the utilization of an SDN controller. Therefore another
important contribution of this work is the implementation
of an application, at the SDN controller side, to configure
and control P4 devices, including the specific parsers and
pipelines that we have designed for enabling visibility inside
tunnels established by the CNI plugins. Specifically, we
have considered the SDN controller developed by ONF, i.e.,
the Open Network Operating System (ONOS) [18], that is
characterized by an active development community.

Finally, the work goes beyond the integration of Kuber-
netes with the network connecting the worker nodes, im-
plementing also a closed-loop control where telemetry data
are used to detect possible Service Level Agreement (SLA)
degradation that could be recovered providing a feedback to
the SDN controller or directly to the applications generating
the traffic. Specifically, this last contribution consists of a P4
pipeline supporting in-band telemetry, a Telemetry Collector
used to aggregate generated telemetry data and a dedicated
Telemetry and Monitoring Platform to elaborate collected
telemetry data.

A preliminary version of this work has been presented
as a practical demonstration in [19]. In addition, this work
includes: (i) the detailed research background; (ii) the overall
architecture of Edge Micro Data Center nodes as designed
within the BRAINE project; (iii) extended version of the
ONOS NetApps to support matching of traffic generated in-
side/outside Kubernetes pods; (iv) a wide set of experimental
results.

Il. BACKGROUND AND RELATED WORK
The joint optimization of IT and networking resources is a
well established research topic as demonstrated by the wide
survey reported in [5] where both centralized and distributed
solutions are resumed. The former approach exploits a cen-
tral element collecting resource information (e.g., interacting
with the cloud orchestrator and the network controller) and
typically provides improved solutions introducing a coordi-
nation overhead layer. Differently, the distributed approach
is more flexible and adaptive to dynamic environments, how-
ever typically provides less effective solutions. For instance,
the work in [20] proposes a distributed approach to partition a
pool of computational resources among multiple applications
using a dynamic agreement. On the other hand, centralized
approaches have recently gained attention because they can
more easily leverage on Machine Learning (ML) techniques.
In [21] a ML platform is developed for effective management
of both computational and networking resources in a 5G
mobile environment, where data are collected from both the
Kubernetes orchestrator and the SDN controller.

The actual networking implementation in Kubernetes clus-
ters is delegated to third-party CNI plugins. The most con-

VOLUME X, YEAR

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

sidered ones are Flannel, Calico, and Kube-router [22].
As explained in [23], Flannel provides a layer-3 IPv4 net-
work among multiple nodes within the cluster, i.e., it does
not control how pods are networked to the host machine.
Several back-end mechanisms are supported (i.e., VXLAN,
UDP, host-gw and additional experimental mechanisms) but
VXLAN is recommended (see Sec.Il for details). With
respect to Flannel, Calico [24] also provides security and
policy enforcement between pods supporting a wide range of
deployment options. Kube-router [25] is a specific solution
for Kubernetes pods networking with the aim of provid-
ing operational simplicity and high performance. Recent re-
search has focused on CNI plugins performance comparison
in different scenarios. In [26] the performance of the most
popular plugins are compared in terms of latency and average
TCP throughput. The results show that Flannel and Kube-
router outperform in terms of latency, while for all the plugins
the TCP average throughput is close to bare-metal capacity.

Regarding network programmability, the work in [27]
reports a comparison using OpenFlow and P4 for the im-
plementation of equivalent functionalities (e.g, packet header
manipulation), showing similar results in terms of through-
put. However, the major potential of P4 is its suitability
for a variety of use cases. In [28], a new pipeline is de-
ployed for providing stateful traffic engineering and cyber-
security on an edge node designed for a multi-layer IP
over optical network. Moreover, augmented firewalling ca-
pabilities are envisioned for mitigating DDoS cyber attack.
Additional P4 use cases for multi-layer networks are re-
ported in [29], including the telemetry of end-to-end optical
performance indicators exchanged between packet-optical
nodes and P4-defined neural networks targeting online cyber-
security. In [30] programmable switches are leveraged for
deploying a multi-purpose ML-based security applications.
It collects the packet length/inter-packet timing frequency
distributions, classifying the traffic flows directly on the
switches. P4 can be also used for deploying an open source
framework that combines the flexibility of software-based
traffic generation with the accuracy of hardware packet time-
stamping, as presented in [31]. In [32], P4 is leveraged for
providing Bit Index Explicit Replication (BIER), proposed
by IETF for efficient transport of IP multicast traffic [33].
The work in [34] presents an use case of P4 registers to store
stateful information achieving autonomous forwarding and
low-latency path discovery. Finally, [35] proposes solutions
for providing network slicing in different networking envi-
ronments.

In addition to the previous use cases, in-band network
telemetry is a key feature enabled by P4. The specifica-
tion [13] proposes three different techniques, i.e., INT-XD,
INT-MX, and INT-MD. In the INT-XD technique (also
known as postcard telemetry), the node directly exports, for
each monitored packet, metadata from the data-plane to the
monitoring system, based on the instructions configured in
local flow tables. Collected metadata is inserted in a new
packet called report, that is forwarded to the monitoring

VOLUME X, YEAR

system. No packet modification is applied on the traffic
packets. In INT-MX (INT-MD) instructions (and metadata)
are written into traffic packets, adding a specific header (i.e,
the INT header). The report packets are generated at each
traversed node in the INT-MX technique, while in the INT-
MD technique metadata are accumulated in the INT header
while the packet is travelling in the network and report
packets are generated only by sink nodes. The work in [36]
provides a surveys of several INT implementations using dif-
ferent target devices and INT header encapsulation. Among
them, it is worth to mention [37], the first implementation
including the dynamic control of the monitored network
using the ONOS controller. Specifically, such work proposed
extensions to ONOS for supporting INT that later have been
included in the ONOS official distribution. More recently,
the work in [38], focused on 5G networks, proposes the
extension of the INT-MD technique up to the user equipment
to enable the evaluation of fully end-to-end (e2e) latency. In
general, INT telemetry features the generation of a report
packet for each data plane packet. However, this approach
may uselessly overload the telemetry system. Thus, the work
in [39], [40] proposes two different approaches for reducing
the amount of generated telemetry data. In [39], an event
detection framework is used to generate report packets
only when certain events are detected in the network. In [40]
a flexible sampling mechanism is implemented so that only a
configurable fraction of data plane packets actually generates
a report packet.

The use of an SDN controller over a P4-based network
(e.g., exploiting the PARuntime interface) allows to take fully
advantage of P4 capabilities. Several solutions are currently
available to deploy a P4Runtime interface in a physical P4
device. The Bmv2 software switch [41] is a tool for emulating
P4-based devices that implements also the PARuntime inter-
face. It is typically used for developing, testing and debug-
ging the P4 data plane and the related network applications to
be used at the SDN controller. However, many commercially
available P4 devices do not provide a PARuntime interface.
To deal with this issue the Stratum [42], [43] and PINS
(P4 Integrated Network Stack) [44] open-source projects
are currently on-going to provide a P4Runtime interface
deployable on P4-based devices equipped with a Network
Operating System (NOS). In particular, Stratum can run on
top of a Debian-based NOS (and on top of the Bmv2 software
switch), whereas PINS can run on top of the SONIC (i.e.,
Software for Open Networking in the Cloud [45]) NOS.
Few works in literature use PARuntime to control P4-based
devices, most of them leverage on Bmv2 and ONOS SDN
controller. The work in [46] demonstrates the compatibility
of P4ARuntime and Openflow devices operating in the same
network under the control of the single SDN controller,
guaranteeing performance isolation among multiple network
slices. The work in [47] implements a benchmarking tool for
P4Runtime-based controllers and applies the tool to evaluate
the performance of the ONOS controller running in both
OpenFlow and P4Runtime mode. The work in [48] proposes

3

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the extension of P4Runtime to support multi-tenant service
on a switch and evaluates the solution in an international
experimental P4 network. Finally, within the ONF commu-
nity, the SD-Fabric [49] project is a full stack application,
i.e., involving both data and control planes, that implements
a P4 pipeline for the Industry 4.0. The proposed P4 pipeline
supports basic L2/L.3 forwarding capabilities, 4G/5G mobile
user plane, and in-band telemetry, whereas at the control
side an ONOS application is provided for managing and
controlling the P4 devices using P4Runtime.

Regarding the integration of Kubernetes with advanced
networking, to the best of our knowledge we did not
find solutions exploiting P4. Some research studies propose
OpenFlow-based SDN solutions integrated with Kubernetes,
providing basic networking features. In [14] a framework is
proposed to create network slices on-demand among contain-
ers, connected by an OpenFlow-based software switch (i.e.,
Open vSwitch, OVS) in the host machine, being programmed
by the SDN controller. The work in [15] proposes to contem-
poraneously deploy two CNI plugins, i.e., Calico to maintain
the connectivity between pods and the Kubernetes master,
and Multus that defines additional interfaces for attaching
each pod to the network avoiding tunneling techniques, i.e.,
it maps each pod on a specific IPPMAC addresses pair so
that the SDN controller can locate each pod. In [16] a CNI
plugin is developed to expose a virtual network to pods and
configure network tunnels among them using the SDN con-
troller. Finally, the work in [50] proposes a tool (i.e., Host-
INT) enabling end-to-end monitoring of traffic flows within
a Kubernetes cluster. Host-INT leverages on eBPF [51] to
extend the Linux network stack of host machines introducing
the support of the INT header, that are then used to collect
information related to the traffic flows (e.g., packet loss and
latency).

The aforementioned work confirms that end-to-end mon-
itoring is required in Kubernetes clusters, especially if host
machines are deployed in different locations in a fog environ-
ment. However, since P4 is not considered, all the proposed
solutions require a deep integration with the Kubernetes
cluster at the data plane level (e.g., installation of dedicated
software in the host machines).

lll. BRAINE ARCHITECTURE

This work has been conducted in the context of the
BRAINE project. Thus, this section provides an overview
of the BRAINE architecture to better contextualize the pro-
posed integration between Kubernetes and the P4-based pro-
grammable network.

The BRANE project targets the development of an en-
ergy efficient Edge Micro Data Center (EMDC) exploiting
a modular architecture (e.g., including heterogeneous hard-
ware such as CPUs, GPUs and FPGAs) to offer computing,
acceleration, storage, and SG VNFs at the network edge. The
project involves many industrial partners and works in several
fields, including design and fabrication of hardware boards
and development of the software framework to be deployed

4

on top of the EMDC for cluster resource orchestration.

Within the scope of this paper, the BRAINE EMDC node
includes a set of CPU boards, providing the cluster com-
putational resources (with one of these boards dedicated
to the hosting of orchestration tools), and dedicated boards
exploiting the Spectrum chipset, made by Mellanox/Nvidia,
implementing the SDN programmable P4-based switches to
provide the connectivity among CPU boards. Besides a repre-
sentation of the EMDC physical infrastructure, Fig. 1 reports
the main components of the software framework as currently
designed by BRAINE, where Kubernetes and ONOS have
been respectively selected to orchestrate the computational
resources and to control the programmable switches aiming
to connect pods deployed on different CPU boards.

The following sections detail the BRAINE components
that have been integrated in this work to implement a closed-
loop automation where pods are deployed on different CPU
boards of the same EMDC node or even on different EMDC
nodes inter-connected by an SDN-enabled network devices.

A. SERVICE MANAGER USER INTERFACE

The Service Manager User Interface (SMUI) is the north-
bound interface of the EMDC node and provides a set of
features to the users such as the unified view of services
execution state through semantic knowledge graphs.

The SMUI is a containerized web-based application
that can be deployed in the cloud or run locally on the
EMDC [52]. It is built upon Kubernetes and Docker concepts
such as images, containers, pods, worker nodes, services,
workflows and their metadata. For instance, SMUI allows the
user to identify the best node for running, training, or testing
an Al service, with the possibility to choose the desirable
execution architecture (e.g., CPU or GPU). Moreover, it
enables the evaluation of resources availability across the
system. With the collected running metadata, it is possible to
check the presence of failures, the data accesses and further
execution metadata.

More in detail, in the BRAINE data model, pods, services,
and workflows are defined in a declarative way through
Kubernetes definition language, using manifest files in YAML
format, with the addition of the workflow data-type. The
SMUI front-end enables service and workflow measure-
ment/monitoring by accessing global and individual views on
the multiple agents involved in the execution, while promptly
taking corrective actions in case of failures such as redeploy-
ing the service to another node.

B. KUBERNETES SCHEDULER

The workloads defined using the SMUI are submitted to
the EMDC by means of Kubernetes pods. A pod is the
smallest execution unit in Kubernetes. Pods can contain one
or more containers to run on a target worker node(s), all of the
containers in a pod share the same IP address. Each service
is a composition of pods that can claim different life-cycles
as well as resources. For example, a service is provided by
a number of pods identified by a cluster-wide DNS name,

VOLUME X, YEAR

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

A .
< (8)
N

Service Manager User Interface

</1

SLA Broker

. K8s Scheduler

Telemetry Database

BRAINE app |

SDN controller

J

i@ D

1 \
! I
! 1
I 1 | 1 | I
! I
! 1
! |
! I}

\\——— ———_,

Telemetry and
monitoring platform

onos
DI‘iVeI’S EMDC PHYSICAL INFRASTRUCTURE
Node A @ Node B Node-N) —
. % O Telemetry Collector
DDDD DDDDD .| 00000
4
0s
9 HW
Telemetry
@ data
N son
NETWORK

FIGURE 1: BRAINE EMDC main components and closed-loop telemetry workflow.

(K8s node A \

POD A1 || POD A2 PODB1 || POD B2
10.244.1.2/24 10.244.1.3/24 10.244.4.2/24 10.244.4.3/24
etho etho ethO ethO
vethl veth2 vethl vethz

|-10.2M.1.1/24J |_10.244.4.1/14J
cmo

cn i0

(K8s node B \

ﬂannel 1

VXLAN encap.
flanneld
Nde:ap.J

flannel 1

VXLAN encap.
flanneld
N decap.

ens160

ens160

192.168.42.2/24 | | 192.168.42.5/24

FIGURE 2: Inter-pod networking based on Flannel CNI using the
VXLAN tunneling.

while the actual pods that compose the service may change
during the execution, the clients of the service will still refer
to the same endpoint.

Kubernetes is in charge of managing the pods. Upon
admission of a pod, it runs mutation hooks, providing oppor-
tunities to validate, complete, and/or manipulate the pod ac-
cording to the cluster’s policies, e.g., replacing all container
images with their latest version counterpart, or checking if
they are hosted on a trusted image repository. Afterward, Ku-
bernetes sends the pods into the scheduling pipeline, which
consists of sorting, filtering, and scheduling. All these steps
are plugin-based and can be extended or customized.

At the sorting stage, Kubernetes provides options to pri-

VOLUME X, YEAR

oritize the pods. At the filtering step, Kubernetes checks
whether the pod requirements could be fulfilled by the avail-
able worker nodes, and if so, it lists the matching nodes
as feasible nodes. During the scheduling phase, Kubernetes
runs the pod through a set of plugins asking them to score
the feasible nodes. The node with the highest score will
be nominated for binding, that is the process of shipping
the pod to the selected worker node and asking it to accept
and run the workload. This is organized via communication
between Kubernetes and an agent (i.e., Kubelet) running on
every worker node that updates and reports the pods status
after each event (e.g., pod admission, termination, resource
change). The status updates are received, aggregated, and
collected by Kubernetes and maintained in a distributed
key/value database called etcd. This information is used
during filtering and scheduling steps, and by every other
plugins requiring information about deployed pods.

C. FLANNEL-BASED KUBERNETES NETWORKING
In BRAINE, Kubernetes works with the Flannel CNI plu-
gin running in VXLAN mode. Within the cluster, Flannel
essentially solves two problems: duplication of pod IP ad-
dresses and inter-node pod networking (i.e., inter-board pod
networking inside a single EMDC). The VXLAN method is
the most used, due to the low introduced latency (i.e., traffic
encapsulation and forwarding operations are performed in
the Linux kernel) and because, exploiting tunneling based on
IP reachability, it can be used to assure communication also
among worker nodes interconnected by a routed IP network
(e.g., among two separate EMDC nodes).

With reference to Fig. 2, Flannel creates a VXLAN net-
work card named flannel.l on each node that acts as

5

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Eth source Eth destination Eth Type
Node A ens160 Node B ens160 IPv4
IP source IP destination IP protocol
Node A ens160 Node B ens160 uDP
UDP source port UDP destination port
XXX 8472
VXLAN
Eth source Eth destination Eth type
Node A flannel.1 Node B flannel.1 IPv4
IP source IP destination IP protocol
POD A1 POD B2 XXX

FIGURE 3: Protocol stack packets traveling from pod A1 to pod B2
(only meaningful fields are reported).

VXLAN Tunnel End Point (VTEP). Such interface is at-
tached to the bridge cni 0 that works as IP gateway for all the
pods in the node. The daemon flanneld configures the UDP
port 8472 as default for VXLAN on the f1lannel. 1 inter-
face. When a new node joins the cluster, flanneld exploits the
information stored in the et cd to: i) create a routing entry in
the local node to route the traffic addressed to pods running
in the new detected node toward f1lannel .1 interface; ii)
add the IP of the new node to the ARP cache mapping it on
the MAC address of flannel.1 interface of the detected
node.

Thus, for instance, once an IP packet is generated in pod
Aj (10.244.1.2), located at node A, and is destined to pod Bs
(10.244.4.3), located at node B, the packet is sent to cni0
in node A (i.e., 10.244.1.1) through the routing table of pod
A;. Then at cniO the packet is sent to the flannel.1l
interface. As a VTEP device, flannel.1l receives the
message, according to the VTEP configuration the flanneld
deamon knows that the destination pod 10.244.4.3 belongs to
node B and it knows the IP address of f1annel. 1 interface
on node B from etcd, moreover through the forwarding
table in node A, it knows the MAC of the VTEP of node B.
Thus, it performs VXLAN packet encapsulation according to
the configured parameters (e.g., local IP, port) and sends the
packet through the physical interface ens160. The resulting
protocol stack for packets traveling from pod A; to pod Bs
when exiting the interface ens160 is illustrated in Fig. 3.

At node B, the VXLAN packet reaches the interface
ens160 via port 8472, the VXLAN packet is forwarded
to the VTEP device flannel.1l for decapsulation. The
unpacked IP packet matches the routing table (10.244.4.0)
in node B, and is therefore forwarded to cniO that, in turn,
forwards it to pod Bs.

D. SDN CONTROLLER

The BRAINE SDN network controller is based on
ONOS [18]. Fig. 4 represents the components specifically de-
veloped for BRAINE and utilized in this work to implement

6

traffic forwarding and in-band telemetry, i.e., the BRAINE
app and the BRAINE P4 app.

1) The BRAINE app
This application implements a set of functionalities exposed
through REST APIs, enabling the interaction with Kuber-
netes, and the SMUI. Also, the same functionalities can
be manually accessed through a set of CLI commands.
Moreover, the application utilizes the ONOS core services
to enable the deployment of point-to-point connections be-
tween pods running in different worker nodes of the cluster.
The two main functionalities supported at the data plane
by the BRAINE app are: i) connection management (i.e.,
add/delete/modify), where each created connection can be
specified up to the transport level (i.e., TCP/UDP ports); ii)
activation of telemetry on selected active connection(s).

To support the aforementioned features, the BRAINE app
is composed of several components (see left side of Fig. 4).
In particular the application includes: i) two databases where
connection and link state information is stored; ii) a routing
module that performs redundant routing of requested connec-
tions and interacts with the ONOS intent service; iii) an intent
listener that allows the application to react in case of network
events affecting established connections; iv) a logger for
tracing and debugging. Moreover, the BRAINE app supports
a set of accessories features to facilitate the interaction with
the network and the gathering of network state information.
Specifically, the features supported by the app can be grouped
in four categories: connections related commands, device
related commands, host related commands and link related
commands.

2) The BRAINE P4 app

The companion BRAINE P4 application has been devel-
oped to program the specific P4 pipeline to be used in the
data plane switches. This application has two main roles:
i) enabling the match of header field encapsulated within
VXLAN tunnels; ii) activating the postcard telemetry on
specific traffic flows. The first objective is achieved through
the implementation of a dedicated pipeline (described in
Sec. V). For the latter objective, the application exposes a
REST API that is dynamically consumed by the BRAINE
app when a telemetry activation request is received from the
orchestrator.

The internal architecture of the BRAINE P4 application
is represented on the right side of Fig. 4. It includes the
pipeline loader component which loads the P4 pipeline de-
scription via the P4Runtime protocol upon the discovery
of P4-based switches. Once the request to activate a new
postcard telemetry on a specific traffic is received through the
REST interface, the Postcard telemetry manager identifies
the devices traversed by the flow and sends them the flow
rules to enable the postcard via the pipeline interpreter. Since
the pipeline interpreter is the only component that is aware of
the pipeline structure (e.g., number of tables and supported
matching fields per table) it is also used for translating

VOLUME X, YEAR

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

CLI commands and REST APIs k REST APIs
! ;) g
Connectivity manager Routing Logger Postcard telemetry manager Logger)
o === 2
ol | === >
~—
< N m
w v
2 Link manager Intent events Y
< = listener Pipeline Statistic >
o loader discovery S
) T
& 4_‘/
é F— o p———)
service Interpreter service
Bmv2 driver
ONOS
\ OMOS core services, drivers and protocols

P4 Runtime protocol

FIGURE 4: Internal architecture of the ONOS apps developed for the BRAINE project, including relations with ONOS core services, drivers and
protocols. Red connectors represent relations implemented within this work, blue connectors represent relations already present in the ONOS

core.

Telemetry Collector

Time-series sample POST
\<timestamp, Sx, Fy, avg, max>

Statistics extractor

ot
"o
: :

Report Dissector

4 Postcard

influxdb 15

Grafana

BRAINE Telemetry &
Monitoring Platform

0 1 2 3
01234567890123456789012345678901

| Ver |Length |NProt| RepMdBits | Reserved [DIQIF|

hw_id |

Telemetry switch_id Sx

Reports :
: : flow_id (NEW) Fy
<S1,F1> |<S1,F2> <S2,F1>| <S2,F2> . 3
Ingress Timestamp 2
Flow 1 — 53
—) — Egress Timestamp g
Q

Flow 2

Postcard Telemetry Report format

FIGURE 5: Postcard Telemetry collector: operation, internal architecture and Report packet format.

into flow rules the output of the intent service created to
forward traffic. The statistic discovery component collects
traffic related information from the P4-based devices to be
visualized in the ONOS GUI (e.g., counters associated to
flow rules). Finally, the logger component facilitates tracing
and debug.

Both applications then rely on the Bmv2 P4 driver in-
cluded in the master ONOS master distribution that has been
demonstrated to be fully functional to perform the connection
to P4 devices and to install all the required flow rules using
the P4 Runtime protocol.

VOLUME X, YEAR

E. TELEMETRY COLLECTOR

The telemetry collector is the module in charge of receiving
the telemetry report packets generated by the P4 switches.
Typically, report packets are generated in a 1:1 ratio, with
respect to the traffic packets belonging to telemetry-enabled
flows, where each report provides metadata information
(e.g., the latency experienced in the switch) related to the
specific traffic packet. For scalability, when the traffic rate in-
creases, metadata information cannot be stored in the teleme-
try database at per-packet level. Therefore, the telemetry col-
lector is in charge of performing dynamic metadata statistics
aggregation, providing time series samples with reasonable
and configurable sampling frequency. Such aggregated per-

7

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

flow and per-switch samples are computed and then stored in
the telemetry time series database for monitoring purposes.

Fig. 5 shows the telemetry collector operation and its
internal architecture. The different monitored traffic flows
(i.e., F1 and F2 in the figure) generate the related telemetry
report packets. The figure also details the report packet
format showing the key fields utilized by the collector. In
particular, the switch_id (Sx) field identifies the physical
P4 switch x generating the report, while the flow_id
(Fy) field discriminates the traffic flow y. The former field
is defined in the P4 INT specifications [13], while the latter
has been proposed as protocol extension in our previous
work [53], in which the SDN controller computes and assigns
the £1ow_1id univocally and provides it along with the flow
rules in the telemetry activation flow entry.

In this work, the considered metadata information re-
trieved by the programmable P4 switch is the intra-switch
packet latency (i.e., the time spent by a packet in the switch
queue). Each switch generates the report packets for each
monitored flow packet, thus the report rate is proportional
to the flow rate. The collector receives and processes the
report packets using specific internal modules. The dissec-
tor module extracts and stores the metadata of each report
within different memory buffer arrays. The statistics extractor
performs the aggregation of metadata samples in a pre-
defined time window, computing the average (avg) and the
maximum (max) latency experienced by packets belonging
to flow y when crossing switch z.

The result is passed to the InfluxDB client API, that
computes the overall statistics timestamp, and sends a REST
POST message to the central InfluxDB database with the new
time series sample. This way, specific latency analysis are
possible at the BRAINE Telemetry and Monitoring Platform
for each monitored flow at different switches.

F. TELEMETRY AND MONITORING PLATFORM

The telemetry and monitoring platform is a containerized
application composed of the following open-source tools:
InfluxDB [54], Prometheus [55], Node Exporter [56], and
Grafana [57].

Specifically, the application collects from the worker
nodes a set of metrics (e.g., CPU and RAM utilization) via
Node Exporter and other custom-built exporters (e.g., the
Telemetry Collector acts as a network resources exporter).
Collected metrics are then harvested by Prometheus, which
in turn, pushes them to the InfluxDB for storage. InfluxDB is
an open-source time series database management system for
the storage of metrics during the retention period. Moreover,
it makes the collected metrics available for querying by
other components of the system. InfluxDB can be queried
via external tools or its own REST APIs. Grafana is used
as the default client of the database to provide a visual and
interactive representation of the metric time series. However,
there are other clients in the system that can interact with
InfluxDB to obtain metric data. For instance, in BRAINE
an important role is played by the the SLA Broker, that

8

monitors the incoming metrics and validates them against the
agreed SLA terms, to take proper corrective action in case of
violations, i.e., activating the responsible actuators (e.g., the
SDN controller).

In the BRAINE project, the InfluxDB is utilized as
the single-point-of-truth metric database that persists the
recorded data via Kubernetes volumes and provides a ser-
vice endpoint for interacting with other components of the
infrastructure. For instance, as described above, the telemetry
collector pushes data directly to InfluxDB via the built-in
APIs.

IV. TELEMETRY WORKFLOW
This work integrates the aforementioned BRAINE com-
ponents in a closed-loop telemetry workflow. Specifically,
the idea is to establish a connectivity between a pair of
pods deployed on different worker nodes belonging to the
same Kubernetes cluster, thus passing through a network
composed of P4-based switches. The traffic flow exchanged
between the two pods is then monitored activating in-band
telemetry. When a latency degradation is detected along the
path, the SDN controller is notified to find an alternative path,
e.g., avoiding the switch that is introducing excessive delay.
The steps of the implemented telemetry workflow are
represented in Fig. 1. Step 1: upon the trigger from the
SMUI, Kubernetes places a number of pods with their own
requirements on different worker nodes. Step 2: Kubernetes
retrieves the network parameters of the deployed pods within
the et cd. Step 3: Kubernetes submits a connectivity request
to the SDN controller using the REST APIs provided by
the ONOS BRAINE app including the network parameters
of the deployed pods (i.e., the request typically contains
MAC and IP addresses and TCP/UDP ports). Step 4: The
SDN controller performs the configuration of the connec-
tivity, sending the required flow rules to the involved P4-
based devices (using P4-Runtime protocol), in the same step
the SDN controller activates the postcard telemetry for the
specific traffic flow, relying on the BRAINE P4 app that
is dynamically queried by the BRAINE app (the telemetry
could be also started/stopped in a subsequent step). Step
5: Once the connectivity is configured, the traffic starts to
flow into the network. Step 6: The related postcard telemetry
is generated toward the Telemetry Collector. Step 7: When
the Telemetry and Monitoring Platform detects a service
level degradation (e.g., increased latency in a specific P4-
based switch) it triggers a service upgrade request to the
SDN controller using a dedicated method of the BRAINE
app REST APIs. Step 8: The SDN controller modifies the
network connectivity parameters in accordance with the re-
ceived request (e.g., modify the traffic routing avoiding the
degraded switch).

V. P4 PIPELINE IMPLEMENTATION

The developed P4 program is written in P44 for the target
architecture vimodel [58] that includes a parser and two
pipelines (ingress and egress). With the proposed approach

VOLUME X, YEAR

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

Eth type
IPv4

A) Parser

Accept

ﬂ

B) Ingress Pipeline

% Parser Table0 Postcard_telemetry = |
m keys actions Cm keys actions

s!landlard_l;\zta:iallza.ing;ess_pon set_egress_port local_metadata.I3_src_add activate_postcard
local_metadata.i2 add_dst | Send_to_cpu [F4a AN g R nop posteard meta

3| local 12_ether_type drop X -14_dst) ativate_posteard

7”1 local_metadata.l3_src_add > local_ 4_dst_port
local_metadata.l3_dst_add
local_metadata.|3_protocol TRUE E_-.
local_metadata.l4_src_port
local_metadata.l4_dst_port

Clone_I2E 3
p C) Egress Pipeline
Int_insert Generate_report
keys actions keys actions
[T 1S_12E_CLOI d rt i
e 1S_I2E_CLONE(standard_metadata) | jnit_metadata - - o-report -
[e local_metadata.l3_src_add
local_metadata.I3_dst_add
Ingress local_metadata.l4_src_port]
TRUE | local_metadata.l4_dst_port > P
[
FALSE
[' [

FIGURE 6: Proposed pipeline architecture for traffic forwarding and telemetry: a) Parser; b) Ingress pipeline; c) Egress pipeline.

the P4 device can be programmed by the SDN controller
to forward both traffic exchanged among pods (i.e., encap-
sulated using VXLAN) and traffic exchanged among host
machines (i.e., not encapsulated). Moreover, the controller
can activate in-band telemetry (i.e., postcard telemetry, INT-
XD) on selected traffic flows, that can be specified up to
transport layer details (i.e., TCP/UDP ports).

The proposed architecture is working only in conjunction
with the Flannel plugin. However, it is easily extensible to
other tunneling techniques applied by different CNI plugins,
only requiring the upgrade of the parser module.

Each pipeline is composed by a number of tables, op-
erating with a match/action policy. Each table supports a
specific set of keys and actions. In each table, a ternary match
policy is used where the selected mask allows to ignore a
key (i.e.,0x0000) or apply an exact match (i.e., Oxff£f).
Some keys are packet header fields, while others are custom
metadata (i.e., local_metadata. x) that are associated to
the packet during the parsing procedure.

A. P4-BASED MATCHING OF POD-TO-POD TRAFFIC

The parser, detailed in Fig. 6(a), is the first module of
the ingress pipeline, as shown in Fig. 6(b). While the
packet passes through the parser stages, its header fields

VOLUME X, YEAR

and the metadata fields are gradually filled. The first
stage of the parser writes the ingress port index into
the specific metadata field. Then, the Parse Packet 10
stage is executed only for packets received from the CPU
port (i.e., P4 Runtime packet_out messages received
from the controller) to retrieve the packet_out header.
The Parse Eth stage extracts the Ethernet header, more-
over it fills the fields local _metadata.l2_src_addr
and local_metadata.l2 dst_addr with the val-
ues contained in the MAC source and destination fields.
Then, in case of IP packets, the Parse IPv4 stage
is executed parsing the IPv4 header, and filling the
metadata fields local_metadata.l3_src_addr and
local metadata.l3_dst_add with the IP source
and destination addresses. Subsequently, the packet is
sent to one of the Parse TCP/UDP stages where the
metadata fields local_metadata.l4_src_port and
local_metadata.l4_dst_port are filled.

If the UDP destination port is 8472, it means that the
packet belongs to a pod-to-pod traffic flow encapsulated
within a VXLAN tunnel by Flannel (see Fig. 3). In this
case, the Parse VXLAN stage is executed parsing VXLAN
header, subsequently IP and TCP/UDP headers are parsed
by Parse Internal stages. During these stages, the aforemen-

9

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

tioned local_metadata. x fields are overwritten with the
corresponding fields enclosed in the internal headers. This
way, if the packet is encapsulated in a VXLAN tunnel, the
ingress pipeline will match the internal header fields, thus
enabling pod-to-pod traffic forwarding.

As illustrated in Fig. 6(b), after parsing, the packets are
forwarded to the ingress pipeline and processed by table0
where the egress port is assigned based on the flow rules
installed by the SDN controller. The actions supported in
this table are: i) set_egress_port, ii) send_to_cpu
and iii) drop. The set_egress_port action is typically
applied to packets matching a forwarding flow rule and as-
signs the output port on which the packet will be transmitted.
Action send_to_cpu is used to forward packets to the
SDN controller through the control plane port (e.g., it is used
for LLDP packets matching specific flow rules); finally, the
default drop action is applied to packets not matching any
flow rules.

B. P4-BASED POSTCARD TELEMETRY
IMPLEMENTATION

The subsequent tables in both the ingress and the egress
pipelines are used to implement the postcard telemetry.
The Postcard_Telemetry table, see Fig. 6(b), matches on
metadata fields and is intended to contain flow rules
for matching each traffic flow requiring postcard teleme-
try. Two actions are supported: activate_postcard
and nop. The action activate_postcard is exe-
cuted for each matching packet (i.e., to packets belong-
ing to traffic flows for which the SDN controller has acti-
vated the telemetry), setting a specific metadata field (i.e.,
postcard_meta_activate_postcard) that is later
evaluated by an if condition to clone the packet using the
cloneI2E external feature. If a packet is not matched,
the default action nop is executed resulting in the packet
forwarded to the egress pipeline without cloning. The cloned
packet will be manipulated in the egress pipeline to generate
a report packet. Cloning the packet is mandatory because P4
devices cannot create packets from scratch [10].

The egress pipeline is illustrated in Fig. 6(c). All the meta-
data fields local_metadata . must be re-initialized be-
cause P4 does not allow the propagation of custom metadata
from the ingress pipeline to the egress pipeline. No actions
are applied to the original packet that leaves the switch
through the port assigned in fable0. Instead, the cloned
packet is processed by the two tables: int_insert and
generate_report. The former table, with a null default
action (i.e., nop), applies the action init_metadata to
matching packets. This action is the one that actually re-
trieves the information to be included in the report message
that is written in the local_metadata.postcard_x*
fields.

The latter table generates the in-band telemetry report
message using the action do_report_encapsulation
manipulating the cloned packet. More in detail, the header of
the cloned packet is modified as following. The Ethernet and

10

IP source addresses are set to the local switch values, while
the destination addresses are set to the telemetry collector
values. The UDP source and destination ports are set to a spe-
cific values to easily recognize report packets at the telemetry
collector. Finally, the report header is added as UDP payload
that includes the metadata retrieved in the previous table,
i.e., switch_id, flow_1id and all other metadata required
by the SDN controller using the instruction_mask as
defined in [13].

VI. EXPERIMENTS

A. EXPERIMENTAL SETUP

The experimental testbed encompasses both computing and
networking resources. Computing resources are deployed
on two dedicated servers, i.e., EMDC; and EM DC5 in
Fig. 7. The hardware of both servers is a DELL PowerEdge
R740, 56 CPUs Intel Xeon Gold 6238R @ 2.20GHz, 256
GB RAM. Three virtual machines (VMs) are deployed in
EM DC4, while two VMs are deployed in EM DC5. One of
the VMs deployed on EM DC' hosts the management and
control software including the Kubernetes master, the ONOS
SDN controller, the telemetry collector and the telemetry
and monitoring platform. The other VMs act as Kubernetes
worker nodes, where each node runs a number of pods (i.e.,
each pod encompasses a plain Ubuntu 20.04 distribution
with basic networking tools).The Telemetry and Monitoring
platform includes the telemetry database deployed into an
influxdB container, and the SLA Broker, implemented as
a set of configurable queries and threshold-based alarms
through dedicated Grafana panels.

Networking resources encompass five P4-based switches,
all of them emulated using Bmv2. Switches S1, S2, S3, S4
are emulated on a dedicated DELL server (Intel Xeon ES5-
2643 v3 6-core 3.40 GHz clock, 32 GB RAM) using physical
Ethernet interfaces. Switch S5 is emulated by deploying a
dockerized Bmv2 on a Mellanox SN2010, running SONiC.

The traffic report generated by the network nodes is
received by the Telemetry Collector, hosted by the Ku-
bernetes master node. As depicted in Fig. 5 the re-
port packet contains: the switch_id field that identifies
the switch, the flow_id field that discriminates traffic
flows, Ingress_Timestamp and Egress_Timestamp
needed to evaluate the hop latency.

B. EXPERIMENTAL RESULTS

1) Pod traffic forwarding validation

This section functionally validates the proposed solution to
process the traffic exchanged between a pair of Kubernetes
pods. Specifically, the traffic is generated between two pods
respectively deployed on node EM DC and EM DCs, thus
traversing the P4-based network.

Fig. 8 illustrates the Wireshark capture, including the
VXLAN encapsulation and the protocol stacking as shown
in Fig. 3. Specifically, the ping application is used to gen-
erate ICMP request/reply messages between pod 10.244.1.2
deployed on worker node 1 and pod 10.244.4.2 deployed on

VOLUME X, YEAR

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

1 r’\‘ Grafana ! 1

! H
1 1
Qinfloxds - @ ;!

192.168.42.2

: |
, ' 1024412 - '
Slane Master = node /Worker 1 _ rr >
\ 192.168.42.1 192.168.42.3

192.168.42.4

;-

! 1024432 -

() o
\ node /Worker 3

z/ s2

FIGURE 7: Experimental testbed encompassing computational and networking resources.

M pod-enslEd.pcap
File Modifica Visualizza Vai Caftura Analizza Statistiche Telefonia Wireless Strumenti Aiuto

AN Z® RERcr=FoEEaaan

N licmp

No. Tme Source Destination Protocel Info
2 ©.048618 10.244.1.2 10.244.4.2 ICHP Echo (ping) request id=ex@4cs,
E 9.852557 ICHP Echo (ping) repl id=0x84c3, s
4 Y .

ICHP Echo (ping) reply b
ICHP Echo (ping) request id-6x@4c3, seq-244/62464,
ICHP Echo (ping) reply id=exedc3, seq=244/62464,

1.855232
2.851551
2.056373

NE W
8k

Frame 4: 148 bytes on wire (1184 bits), 148 bytes captured (1184 bits)

Ethernet II, Src: VMware a7:1d:57 (89:58:56:a7:1d:57), Dst: VMware_a7:cl:ds (@@:58:56:a7:cl:ds)
Internet Protecol Version 4, Src: 192.168.42.2 (192.168.42.2), Dst: 192.168.42.5 (192.168.42.5)
User Datagram Protocol, Src Port: 34512, Dst Port: 8472

Virtual eXtensible Local Area Network

Ethernet II, Src: Se:al:fa:ch:fe:fd (Se:al:fa:cb:fe:fd), Dst: 2a:7f:57:91:70:66 (2a:7f:57:91:78:66)
Internet Protecol Version 4, Src: 10.244.1.2 (10.244.1.2), Dst: 10.244.4.2 (10.244.4.2)

Internet Control Message Protocol

FIGURE 8: Wireshark capture of ICMP traffic between two pods.

worker node 4. The packets are captured in VM Worker 1 on
interface 192.168.42.2. The presence of both ICMP request
and reply proves that packets are correctly switched by the
network in both directions. The experienced round-trip time
is around 5 milliseconds.

Fig. 9 shows a screenshot of the ONOS web GUI illus-
trating the flow rules installed in switch S1 where the rules
counters show that the traffic exchanged between the two
pods is correctly matched.

2) Pod traffic telemetry validation
This section functionally validates the whole telemetry work-
flow as described in Fig. 1. Specifically, two separate traffic
flows are activated between two different pairs of pods: flow
IDs 250 and 123. The two flows consist of five parallel TCP
sessions generated with the iperf3 application. Telemetry is
active in both flows; however, the SLA Broker is configured
to generate the feedback to ONOS (step 8 in Fig. 1) only for
flow 250.

Fig. 10 reports the latency data as collected by the SLA
Broker panels during the network reconfiguration. Both flows
are initially routed along the path S1, 53, S4, S2, thus

VOLUME X, YEAR

. . «>
Flows for Device device:bmv2:s01 (5 Tota\)O &+ D m
[Search |[Search By v|
FLOW
STATE PACKETS ~ DURATION o bt TABLE NAME SELECTOR TREATMENT APP NAME
table0 imm[OUTPUT:C
Added 682 1,054 40000 "gresstabiedcont epy rypepio ONTROLLER), *core
rol.table0
cleared:true
table0 t imm[OUTPUT:C
Added 682 1,054 40000 "ETEsSTAVENCONt emy rvpeyigp ONTROLLER], *core
rol.table0
cleared:true
ingress.table0_cont POUIRULS
Added 384 1079 40000 METESSAvEDS ETHTYPEarp ONTROLLER], *core
rol.table0
cleared:true
IN_PORTS,
ETH_DST:SEATIF
ACB:FO:FD,
ETH_SRC:2A.7F:5
79170:66, immlOUTPUTA],
Added 270 427 200 0 ETH_TYPE:pyd, e net.intent
IPV4_SRC:10.244

42132,
IPV4_DST:10.244
1.2/32

IN_PORT:1,
ETH_DST:2A:7F:5
7:91:70:66,
ETH_SRC:SEAT:F

ACBIFO:FD, imm[OUTPUT:3],
Added 27 427 200 0 ETH.TYPEipvd, clearedfalse net.intent

IPV4_SRC:10.244
1.2/32,
IPV4_DST:10.244
42/32

FIGURE 9: ONOS view of rules installed on switch S1.

both plots report four latency lines, one per traversed switch.
At time fy switch S3 transmission rate is manually de-
graded, thus increasing the switch latency for both flows.
The SLA Broker performs a threshold-based control over the
per switch latency of flow 250 and triggers an alert if the
degradation persists for 4 seconds. This behaviour is reflected
in the SLA Broker panel as depicted in Fig. 10.

In the actual experiment, degradation is detected at ¢; and
the alert is triggered back to ONOS at ¢5. As described in
the previous sections, ONOS reacts by rerouting the affected
flow (i.e., flow 250) on path S1, S5, 52, i.e., after to, Fig. 10
reports the latency of those switches. It is worth noting
that S5 is characterized by a higher latency compared to
other switches; indeed, S5 is emulated on less performance

11

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

hardware. Conversely, flow 123 is not involved in the recon-
figuration, showing that the implemented framework is able
to select the single traffic flow.

The telemetry workflow experiment has been repeated 10
times collecting also the achieved end-to-end bit-rate of both
flows. The results are illustrated in Fig. 11, including ten
cyan lines reporting the specific result for each experiment
and a single red line reporting the average trend. Specifically,
Fig. 11(a) is related to traffic flow 250, it shows that after
to the rate is degraded, then it is partially recovered at time
to when the traffic is switched on the alternate path. It is
worth noting that rerouting the traffic does not guarantee the
recovery of the overall bit-rate. In fact, the recovery path
includes switch S5 emulated on a less performing hardware
with limited traffic capabilities. Fig. 11(b) is related to traffic
flow 123 that is not involved in the reconfiguration, thus after
to the bit-rate results to be degraded and never recovered.

Fig. 11(a) shows that the whole workflow takes about 6
seconds to be performed (i.e., to — tp). However, most of
this time is expended within the telemetry and monitoring
platform (i.e., SLA Broker) as a result of our configuration to
trigger the alert. This time could be reduced by configuring
the SLA Broker with higher SLA checking rates on the
InfluxDB filled by the Telemetry Collector. Therefore, to
better evaluate the achievable performance of the system,
we have measured the re-configuration time excluding the
telemetry and monitoring platform from the workflow, i.e.,
the feedback to the ONOS controller is directly generated by
the Telemetry Collector.

Fig. 12 reports the latency data collected by an auxiliary
Grafana panel during the network reconfiguration, when the
reconfiguration is triggered directly by the Telemetry Collec-
tor (i.e., thus excluding the influxdB and the SLA Broker).
The experiment has been repeated 10 times and the average
time for performing the reconfiguration is 1.95 seconds that
includes: the detection of the latency degradation at the
Telemetry Collector, all control plane procedures performed
in ONOS (e.g., computation of an alternate path), and P4
Runtime message exchange towards the involved switches.

VIl. CONCLUSIONS AND FUTURE DIRECTIONS

The integration between IT and networking technologies
is fundamental for effective micro-services deployment on
next generation edge nodes interconnected by a network
infrastructure. However, currently available solutions con-
sidering Kubernetes orchestrated clusters and programmable
networks are based on legacy SDN techniques and thus
require deep integration at the data plane level.

In this work we proposed a P4-based solution able to
gain visibility inside tunnelled traffic, and thus enabling such
integration at the control plane level through communication
between the Kubernetes orchestrator and the ONOS SDN
controller. Also we experimentally demonstrated the first
comprehensive framework enabling effective traffic teleme-
try, at pod level, building upon a closed-loop workflow
among (i) the Kubernetes orchestrator, (ii) the ONOS SDN

12

Controller, (iii) the enhanced P4-based data plane, and (iv)
the telemetry system. The integrated system is able to or-
chestrate Kubernetes micro-service chains and automatic P4
switch configuration including configurable telemetry. More-
over, the closed-loop BRAINE telemetry and monitoring
system is able to enforce automatic network recovery of
specific flows violating latency SLA in less than 2 seconds.

The proposed framework paves the way toward even more
advanced closed-loop strategies for the dynamic reconfigura-
tion of flows (e.g., traffic prioritization, control of generated
traffic rates at the application level, etc.) depending on the
performance measured on the network.

ACKNOWLEDGMENTS

This work received funding from the ECSEL JU project
BRAINE (grant agreement No 876967). The JU receives
support from the EU Horizon 2020 research and innovation

programme and the Italian Ministry of Education, University,
and Research (MIUR).

REFERENCES

[1] R. Morabito, I. Farris, A. Iera, and T. Taleb, “Evaluating performance of
containerized iot services for clustered devices at the network edge,” IEEE
Internet Things J., vol. 4, no. 4, pp. 1019-1030, 2017.

[2] D. Adami, B. Martini, A. Sgambelluri, L. Donatini, M. Gharbaoui, P. Cas-
toldi, and S. Giordano, “An SDN orchestrator for cloud data center:
System design and experimental evaluation,” Trans. Emerg. Telecommun.
Technol., vol. 28, no. 11, p. 3172, 2017.

[3] R.Czivaand D. P. Pezaros, “‘Container network functions: Bringing nfv to
the network edge,” IEEE Commun. Mag., vol. 55, no. 6, pp. 24-31, 2017.

[4] R.Muiioz, R. Vilalta, N. Yoshikane, R. Casellas, R. Martinez, T. Tsuritani,
and I. Morita, “Integration of IoT, transport SDN, and edge/cloud comput-
ing for dynamic distribution of IoT analytics and efficient use of network
resources,” J. Light. Technol., vol. 36, no. 7, pp. 1420-1428, 2018.

[5] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in edge
computing: A survey,” I[EEE Commun. Surv. Tutor., vol. 23, no. 4, pp.
2131-2165, 2021.

[6] P. Kayal, “Kubernetes in fog computing: Feasibility demonstration, limi-
tations and improvement scope : Invited paper,” in Proc. IEEE 6th World
Forum on Internet of Things (WF-IoT), 2020.

[7] “Kubernetes documentation.” [Online]. Available: https://kubernetes.io/
docs/home/

[8] I. Pelle, F. Paolucci, B. Sonkoly, and F. Cugini, “Latency-sensitive
edge/cloud serverless dynamic deployment over telemetry-based packet-
optical network,” IEEE J. Sel. Areas Commun., vol. 39, no. 9, pp. 2849—
2863, 2021.

[9] A.S.Mugaddas, R. S. Tessinari, R. Casellas, M. Garrich, E. Hugues-Salas,
0. Gonzalez de Dios, L. Luque, A. Giorgetti, A. Sgambelluri, F. Cugini,
E.-J. Moreno-Muro, R. Morro, K. Farrow, A. Wonfor, M. Channegowda,
P. Pavon-Marino, A. Lord, R. Nejabati, and D. Simeonidou, “NFV or-
chestration over disaggregated metro optical networks with end-to-end
multi-layer slicing enabling crowdsourced live video streaming,” J. Opt.
Commun. Netw., vol. 13, no. 8, pp. D68-D79, 2021.

[10] The P4 Language Consortium. (2017, May) P4 16 Language Specification.
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html. Accessed: 2021-07-
26.

[11] F. Paolucci, F. Cugini, P. Castoldi, and T. Osiniski, “Enhancing 5G
SDN/NFV edge with P4 data plane programmability,” IEEE Network,
vol. 35, no. 3, pp. 154-160, 2021.

[12] Open Networking Foundation, “OpenFlow Switch Specification version
1.5.1 Mar. 2015.

[13] “In-band network telemetry (INT) dataplane specification version
2.1, P4.org Applications Working Group. [Online]. Available: https:
/Ip4.org/p4-spec/docs/INT_v2_1.pdf.

[14] A.M. Adeel Rafiq and W.-C. Song, “Intent-based slicing between contain-
ers in SDN overlay network,” Journal of Communications, vol. 15, no. 3,
2020.

VOLUME X, YEAR

https://kubernetes.io/docs/home/
https://kubernetes.io/docs/home/
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/INT_v2_1.pdf.
https://p4.org/p4-spec/docs/INT_v2_1.pdf.

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

IEEE Access

@ AVG hop latency @flowID=250

100000000 .tO
1

4

b

\/ switch3

'
10000000 :
'
£ '
'
1000000 : s
: + switch4 . switch1
At b oA e AN P A I N s NN
100000 : v - switch2
16:12:10 16:12:20 16:12:30 16:12:40 16:12:50 16:13:00 16:13:10 16:13:20 16:13:30 16:13:40 16:13:50 16:14:00
== switchl switch2 == switch3 == switch4 == switchS
AVG hop latency @flowID=123
100000000
10000000 switcn3
@
=N
1000000 switch4
switchl
A A e AP AT e A AN i et b\ N S A I Nt f o N e
100000 switch2
16:12:10 16:12:20 16:12:30 16:12:40 16:12:50 16:13:00 16:13:10 16:13:20 16:13:30 16:13:40 16:13:50 16:14:00
== switchl SWitch2 == switch3 == switch4

FIGURE 10: Telemetry and Monitoring Platform: view of switch latency for traffic flows 250 and 123. Latency [ns] as a function of experiment

time.

Traffic flow 250 - with monitoring

Received bitrate [Mb/s]

10 11 12 13 14 15 16 17 18 19 20
Time [s]

Received bitrate [Mb/s]

Traffic flow 123 - without monitoring

Single experiments

: e /\verage
'

10 11 12 13 14 15 16 17 18 19 20
Time [s]

FIGURE 11: Flow bitrate: (a) flow 250; (b) flow 123. Mbps as a function of experiment time.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

R. Botez, J. Costa-Requena, I. Ivanciu, V. Strautiu, and V. Dobrota, “SDN-
based network slicing mechanism for a scalable 4G/5G core network: A
kubernetes approach,” Sensors, vol. 21, no. 11, 2021.

R. Figueiredo and K. Subratie, “Demo: EdgeVPN.io: Open-source virtual
private network for seamless edge computing with kubernetes,” in Proc.
IEEE/ACM Symposium on Edge Computing, 2020.

“P4runtime specification version 1.3.0,” P4.org Applications Working
Group. [Online]. Available: https://p4.org/p4-spec/p4runtime/v1.3.0/
P4Runtime-Spec.pdf.

“Open network operating system,” ONOS official site. [Online]. Available:
https://opennetworking.org/onos/

A. Giorgetti, D. Scano, J. Chamanara, M. Albado, E. Marx, S. Ahearne,
A. Sgambelluri, F. Paolucci, and F. Cugini, “Kubernetes orchestration
in SDN-based edge network infrastructure,” in Tech dig. Optical Fiber
Communications Conference and Exhibition (OFC), 2022.

G. Castellano, F. Esposito, and F. Risso, “A distributed orchestration
algorithm for edge computing resources with guarantees,” in Proc. IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications, 2019,
pp. 2548-2556.

E. Zeydan, J. Mangues-Bafalluy, and Y. Turk, “Intelligent service orches-
tration in edge cloud networks,” IEEE Network, vol. 35, no. 6, pp. 126—
132, 2021.

VOLUME X, YEAR

[22]
[23]
[24]
[25]
[26]
[27]

[28]

[29]

[30]

“Kubernetes CNL” [Online]. Available: https://www.cni.dev/

“Flannel.” [Online]. Available: https://github.com/flannel-io/flannel
“Calico.” [Online]. Available: https://github.com/projectcalico/calico
“Kuberouter.” [Online]. Available: https://github.com/cloudnativelabs/
kube-router

N. Kapocius, “Performance studies of kubernetes network solutions,” in
Proc. IEEE Open Conference of Electrical, Electronic and Information
Sciences (eStream), 2020, pp. 1-6.

P. Zanna, P. Radcliffe, and K. G. Chavez, “A method for comparing open-
flow and p4.,” in Proc. 29th International Telecommunication Networks
and Applications Conference (ITNAC), 2019, pp. 1-3.

F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and
P. Castoldi, “P4 edge node enabling stateful traffic engineering and cyber
security,” J. Opt. Commun. Netw., vol. 11, no. 1, pp. A84—A95, 2019.

F. Cugini, D. Scano, A. Giorgetti, A. Sgambelluri, L. D. Marinis, P. Cas-
toldi, and F. Paolucci, “Telemetry and Al-based security P4 applications
for optical networks [invited],” J. Opt. Commun. Netw., vol. 15, no. 1, pp.
A1-A10, Jan 2023.

D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V. Ramos, and
A. Madeira, “Flowlens: Enabling efficient flow classification for ml-based
network security applications,” in Proc. Network and Distributed Systems
Security Symposium (NDSS), 2021.

13

https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.pdf.
https://p4.org/p4-spec/p4runtime/v1.3.0/P4Runtime-Spec.pdf.
https://opennetworking.org/onos/
https://www.cni.dev/
https://github.com/flannel-io/flannel
https://github.com/projectcalico/calico
https://github.com/cloudnativelabs/kube-router
https://github.com/cloudnativelabs/kube-router

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

@ AVG hop latency @flowID=250

t, t
100000000 0: : 2
LI |
[
[|
10000000 I
— 8
1
1000000 switch3 . :
e Y N e e I
switch4 Iv—vwfw : switch1
i s e ——— NP eaae ™ NoPiring
1
100000 switch2 iy
14:01:40 14:01:50 14:02:00 14:02:10 14:02:20 14:02:30 14:02:40 14:02:50 14:03:00 14:03:10 14:03:20 14:03:30
== switch1l SWitch2 == switch3 == switch4 == switchS

FIGURE 12: Auxiliary panel view of switch latency for traffic flows 250 experiencing network failure recovery excluding the Telemetry and
Monitoring Platform. Latency [ns] as a function of experiment time.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]
[45]

[46]

[47]

R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and B. Koldehofe, “P4STA:
High performance packet timestamping with programmable packet pro-
cessors,” in Proc. 2020 IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2020.

D. Merling, S. Lindner, and M. Menth, “Hardware-based evaluation of
scalable and resilient multicast with BIER in P4,” IEEE Access, vol. 9, pp.
34500-34 514, 2021.

I. Wijnands, E. Rosen, A. Dolganow, T. Przygienda, and S. Aldrin,
“RFC 8279: Multicast using bit index explicit replication (BIER),” 2018.
J. Alvarez-Horcajo, I. Martinez-Yelmo, D. Lopez-Pajares, J. A. Carral,
and M. Savi, “A hybrid SDN switch based on standard P4 code,” IEEE
Commun. Lett., vol. 25, no. 5, pp. 1482-1485, 2021.

Y. Yan, A. F. Beldachi, R. Nejabati, and D. Simeonidou, “P4-enabled smart
nic: Enabling sliceable and service-driven optical data centres,” J. Light.
Technol., vol. 38, no. 9, pp. 2688-2694, 2020.

P. Manzanares-Lopez, J. P. Mufioz-Gea, and J. Malgosa-Sanahuja, “Pas-
sive in-band network telemetry systems: The potential of programmable
data plane on network-wide telemetry,” IEEE Access, vol. 9, pp. 20391-
20409, 2021.

N. Van Tu, J. Hyun, and J. W.-K. Hong, “Towards ONOS-based SDN
monitoring using in-band network telemetry,” in Proc. 19th Asia-Pacific
Network Operations and Management Symposium (APNOMS), 2017, pp.
76-81.

D. Scano, F. Paolucci, K. Kondepu, A. Sgambelluri, L. Valcarenghi, and
F. Cugini, “Extending P4 in-band telemetry to user equipment for latency-
and localization-aware autonomous networking with Al forecasting,” J.
Opt. Commun. Netw., vol. 13, no. 9, pp. D103-D114, 2021.

J. Vestin, A. Kassler, D. Bhamare, K.-J. Grinnemo, J.-O. Andersson, and
G. Pongracz, “Programmable event detection for in-band network teleme-
try,” in Proc. IEEE 8th International Conference on Cloud Networking
(CloudNet), 2019, pp. 1-6.

D. Suh, S. Jang, S. Han, S. Pack, and X. Wang, “Flexible sampling-based
in-band network telemetry in programmable data plane,” ICT Express,
vol. 6, no. 1, pp. 62-65, 2020.

“Behavioral model (bmv2).” [Online]. Available: https://github.com/
p4lang/behavioral-model.
“Stratum,” Stratum official
/lopennetworking.org/stratum/.
B. O’Connor, Y. Tseng, M. Pudelko, C. Cascone, A. Endurthi, Y. Wang,
A. Ghaffarkhah, D. Gopalpur, T. Everman, T. Madejski, J. Wanderer,
and A. Vahdat, “Using P4 on fixed-pipeline and programmable stratum
switches,” in Proc. ACM/IEEE Symposium on Architectures for Network-
ing and Communications Systems (ANCS), 2019, pp. 1-2.

“P4 integrated network stack,” PINS official site. [Online]. Available:
https://opennetworking.org/pins/

“Software for open networking in the cloud,” SONiIC official site.
[Online]. Available: https://sonic-net.github.io/SONiC/

C.-Y. Chang, T. G. Ruiz, F. Paolucci, M. A. Jiménez, J. Sacido, C. Papa-
gianni, F. Ubaldi, D. Scano, M. Gharbaoui, A. Giorgetti, L. Valcarenghi,
K. Tomakh, A. Boddi, A. Caparrés, M. Pergolesi, and B. Martini, “Per-
formance isolation for network slices in industry 4.0: The 5Growth ap-
proach,” IEEE Access, vol. 9, 2021.

H. Harkous, K. Sherkawi, M. Jarschel, R. Pries, M. He, and W. Kellerer,
“P4RCProbe for evaluating the performance of P4Runtime-based con-

site. [Online]. Available: https:

[48]

[49]
[50]

[51]
[52]

[53]

[54]
[55]
[56]

[57]
[58]

His
software defined networking, optical networks, disaggregated networks.

trollers,” in Proc. IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), 2021, pp. 74-80.

B. Chung, C.-C. Tseng, J. H. Chen, and J. Mambretti, “P4AMT: Multi-
tenant support prototype for international P4 testbed,” in Proc. ACM/IEEE
Symposium on Architectures for Networking and Communications Systems
(ANCS), 2019.

“SD-fabric.” [Online]. Available: https://opennetworking.org/sd-fabric/.
T. Osiniski and C. Cascone, “Achieving end-to-end network visibility with
host-int,” in Proc. of the Symposium on Architectures for Networking and
Communications Systems (ANCS), 2021.

“eBPF project.” [Online]. Available: https://ebpf.io/

5Growth AIMLP code repository, https://github.com/eccenca/braine/tree/
main/webclient/, Accessed: 2021-Jul-26.

F. Paolucci, D. Scano, F. Cugini, A. Sgambelluri, L. Valcarenghi, C. Cavaz-
zoni, G. Ferraris, and P. Castoldi, “User plane function offloading in P4
switches for enhanced 5G mobile edge computing,” in Proc. 17th Inter-
national Conference on the Design of Reliable Communication Networks
(DRCN), 2021.

“Influx database.” [Online]. Available: influxdata.com

“Prometheus.” [Online]. Available: prometheus.io

“Node exporter.” [Online]. Available: github.com/prometheus/node_
exporter

“Grafana.” [Online]. Available: grafana.com

“Vimodel,” VIModel. [Online]. Available: https://github.com/p4lang/
p4c/blob/main/p4include/vIimodel.p4.

DAVIDE SCANO received his B.S. in telecom-
munication engineering from the University of
Pisa (2017) and his M.S in computer science and
networking from the University of Pisa and Scuola
Superiore Sant’ Anna (2019), with a research the-
sis on SDN for guaranteeing QoS in network
slicing. In 2020 he got a Research Scholarship
at Scuola Superiore Sant’Anna, Pisa. In October
2020 he became a Ph.D. student in Emerging Dig-
ital Technologies at Scuola Superiore Sant’ Anna.
research interests are software defined networking, next generation

VOLUME X, YEAR

https://github.com/p4lang/behavioral-model.
https://github.com/p4lang/behavioral-model.
https://opennetworking.org/stratum/.
https://opennetworking.org/stratum/.
https://opennetworking.org/pins/
https://sonic-net.github.io/SONiC/
https://opennetworking.org/sd-fabric/.
https://ebpf.io/
https://github.com/eccenca/braine/tree/main/webclient/
https://github.com/eccenca/braine/tree/main/webclient/
influxdata.com
prometheus.io
github.com/prometheus/node_exporter
github.com/prometheus/node_exporter
grafana.com
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4.
https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4.

Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

ALESSIO GIORGETTI received the Ph.D. de-
gree from Scuola Superiore Sant’Anna (SSSA),
Pisa, Italy, in 2006. In 2007, he was a visiting
scholar at the Centre for Advanced Photonics and
Electronics, University of Cambridge, UK. He was
an Assistant Professor at SSSA from 2007 to 2020.
He is currently a researcher at IEIIT-CNR, Italy.
His research interests include optical network ar-
chitectures and control plane, industrial networks
design, software-defined networking, and quan-
tum communications. He is an active software contributor to Open Network
Foundation projects. He is the author of more than 100 publications includ-
ing international journal articles, conference proceedings, and patents.

FRANCESCO PAOLUCCI is Senior Researcher
at CNIT, Pisa, Italy. His main research interests
are in the field of network control plane and ser-
vice orchestration for edge platforms, traffic engi-
neering, network disaggregation, advanced mon-
itoring/telemetry, SDN data plane programmabil-
ity. He has been involved in many industrial and
European research projects on next generation
control networking (E-Photon/ONe+, BONE, NO-
BEL, STRONGEST, IDEALIST, PACE, 5GEx,
S5GTRANSFORMER, 5Growth, METROHAUL, BRAINE). He is co-author
of 3 IETF Internet Drafts, more than 200 publications in international
journals, conference proceedings and book chapters, and filed 4 international
patents. He is Associate Editor of the IEEE/OSA Journal of Optical Commu-
nications and Networking (JOCN) and Executive Editor of the Transactions
on Emerging Telecommunications Technologies (ETT).

ANDREA SGAMBELLURI is an Assistant pro-
fessor at TECIP institute of Scuola Superiore
Sant’ Anna, Pisa, Italy. He received the Ph.D. from
Scuola Superiore Sant’Anna, Pisa, in 2015. In
March 2015 he won the grand prize at 2015 OFC
Corning Outstanding Student Paper Competition
with the paper: “First Demonstration of SDN-
based Segment Routing in Multi-layer Networks”.
In 2016 he was postdoc researcher KTH Royal
Institute of Technology (Optical Networks Labo-
ratory (ONLab)). His main research interests are in the field of control plane
for packet and optical networks, including SDN/NFV, segment routing,
YANG/NETCONEF, traffic engineering, network disaggregation, new genera-
tion monitoring and data telemetry. He is co-author of 2 IETF Internet Drafts,
more than 130 publications in international journals, conference proceedings
and book chapters.

VOLUME X, YEAR

JAVAD CHAMANARA is a researcher, project
manager, and lecturer at the Leibniz Univer-
sity Hannover, Germany working on distributed
knowledge graphs and machine learning tech-
niques. Javad has obtained his Ph.D. in Computer
Science from Friedrich Schiller University, Jena,
an M.Sc. in Software Engineering from the Uni-
versity of Polytechnic, Tehran, Iran, and a B.Sc.
in Software Engineering from the University of
Science and Culture, Tehran, Iran. he has devel-
oped a new query language (QUIS) for data retrieval from heterogeneous
data sources, introduced, JenPlane, a new data life cycle for scientific data
management projects, and is chairing the semantic industries community
group at W3C.

JOHN ROTHMAN received his B.S. degree in
electrical engineering from Eastern Washington
University, with specialization in digital signal
processing and robotics in 2014. In 2020 he got
a M.S. degree in data analytics from Hildesheim
University, with focus in image processing. His
thesis topic was in the field of image similarity
sampling techniques. He is currently a Research
Engineer at Leibniz University Hannover at the
L3s Research Institute, and main body of work in-
volves training and deploying Machine Learning applications for scheduling,
as well as telemetry monitoring and storage. He has coauthor of two peer-
reviewed publications. He was the IEEE Student Chapter Chair, in 2013.

FILIPPO CUGINI is Head of the Research Area
at CNIT, Pisa, Italy. His main research interests
include theoretical and experimental studies in
the field of communications and networking. He
serves as Coordinator of the ECSEL BRAINE
Project, an EU-funded project aiming at boost-
ing Artificial Intelligence at the Network Edge
(www.braine-project.eu). He is a co-author of 14
patents and more than 300 international publica-
tions.

EDGARD MARX is a project manager at the
Leipzig University of Applied Science and Linked
Data Expert at eccenca GmbH, Germany. His main
research interests include theoretical and experi-
mental studies in the field of information retrieval,
databases, and knowledge graphs. He has been
involved in various international research projects
such as DFG DINOBBIO, BMWK COYPU, EC-
SEL BRAINE, and CLEVER. He has co-authored
over 40 peer-reviewed international publications.

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

architectures and design.

MUSTAFA AL-BADO is a Senior Research Sci-
entist at Dell Technologies with a demonstrated
history of working in industries and higher ed-
ucation institutes. He has contributed to several
granted patents and standards about 5G technolo-
gies. His research interests lie in virtualisation, 5G
technologies, network slicing, as-a-service, and
Cloud and Edge computing.

SEAN AHEARNE is a Senior Research Sci-
entist at Dell Technologies and Technical Lead
of the ECSEL BRAINE project. His background
includes extensive work on Software Defined Net-
working for both optical and wireless networks
including 5G and THz with several published
works. He also has a further background and
interest in system virtualization both hypervisor
and container-based, hardware acceleration with
GPU’s and FPGA’s, and hardware and software

VOLUME X, YEAR

	Introduction
	Background and Related Work
	BRAINE architecture
	Service Manager User Interface
	Kubernetes scheduler
	Flannel-based Kubernetes networking
	SDN controller
	The BRAINE app
	The BRAINE P4 app

	Telemetry collector
	Telemetry and monitoring platform

	Telemetry workflow
	P4 pipeline implementation
	P4-based matching of pod-to-pod traffic
	P4-based postcard telemetry implementation

	Experiments
	Experimental setup
	Experimental results
	Pod traffic forwarding validation
	Pod traffic telemetry validation

	Conclusions and Future directions
	REFERENCES
	Davide Scano
	Alessio Giorgetti
	Francesco Paolucci
	Andrea Sgambelluri
	Javad Chamanara
	John Rothman
	Filippo Cugini
	Edgard Marx
	Mustafa Al-Bado
	Sean Ahearne

