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Abstract—5G Networks revolution will be enabled by deep integration of Software Defined 

Networking (SDN) and Network Function Virtualization (NFV) to support multi-tenancy, per-user 

and per-application quality of service and experience. However, full softwarization and current 

SDN platforms may not be able to sustain the complexity and the heterogeneity of different 

requirements, e.g. strict latency, jitter, high precision traffic and advanced monitoring. For such 

services, SDN/NFV needs to be boosted not only considering orchestration and control plane, 

but also data plane programmability. In this paper, the potential of the P4 language is illustrated 

with the aim to show its disruptive novel functionalities at the data plane level currently not 

available in a SDN/NFV network, opening the way to new orchestration frameworks and enabling 

a novel autonomic and flexible network at the edge. Use cases, assessments and softwarized 

performance results are proposed and discussed in the edge and IoT scenario, targeting 

advanced traffic engineering, cyber security, multi-tenancy, 5G offloading, and telemetry, to 

demonstrate the feasibility of such approach. 

 

1   INTRODUCTION 

 

 THE ADVENT of beyond 5G Networks is 

driving relevant enhancements in all the 

communication and IT segments to convey the 

requirements of Software Defined Networking (SDN) 

and Network Function Virtualization (NFV) [1]. 

Networks will be SDN-configurable and orchestrated 

to support multi-tenant environments by means of 

network slicing and fully virtualized service 

applications. These network functions will be 

automatically deployed as service chains to offer an 

unprecedented quality of transmission, service, and 

experience with yet unreached flexibility and cost 

reduction. Softwarization is one of the key drivers of 

this novel service-oriented framework [1]. SDN control 
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plane is foreseen as the candidate solution to support 

automated network configurability by means of 

standard API (e.g., OpenFlow, Netconf/YANG), 

separating and abstracting the data plane from the 

orchestration and control layer. However, current SDN 

platforms will not be able to sustain the complexity 

disclosed by heterogeneous softwarized networks, such 

as next generation disaggregated metro networks 

connecting data centers with 5G fronthaul, edge/fog 

nodes supporting IoT gateways serving massive 

sensors and devices. In such scenarios, the current SDN 

control lacks advanced and automatic forwarding 

capabilities, per-packet treatment and manipulation 

functions, high precision traffic monitoring/telemetry, 

and services with extreme requirements (e.g., zero 

jitter, bounded low latency). So far, a limited set of 

operation have been demanded to the SDN controller. 

However, this introduces undesirable delay and 

scalability issues, preventing its practical deployment 

as network bitrates increase. 

To overcome such limitations, a new layer of 

softwarization has been introduced, providing the 

capability to program the switch data plane through 

high-level API and languages. The P4 language is 

emerging as the largest and most considered initiative 

[2]. Originally designed for intra-data center scenarios, 

P4 is rapidly attracting attention for advanced 

SDN/NFV softwarization solutions. Among the 

different languages, platforms and frameworks 

proposed for data plane programmability, including 

stateful functions, such as OpenState [3], RMT [4] and 

FAST [5], the P4 framework is gaining consensus and 

support by means of many vendors (e.g., 

Intel/Barefoot, Xilinx, Mellanox, Broadcom) and open 

source initiatives (e.g., ONOS and OpenDayLight). 

In this paper, we first summarize the P4 technology and 

capabilities. Then, also resorting to our previous works 

on P4 [6][7], we present and discuss a number of use 

cases and novel opportunities enabled by the P4 

language implemented in 5G edge/fog nodes, including 

dynamic traffic control for load balancing and 

offloading, latency-bounded service implementation, 

and novel stateful operations for embedded cyber 

security functions. Finally, we present an experimental 

assessment of selected use cases, providing novel P4 

containerized software switch performance evaluation 

with different platforms in the edge/IoT context and a 

critical discussion on its benefits, applicability and 

open issues. 

 

2   P4 DATA PLANE PROGRAMMABILITY 

 

The P4 language was introduced to define and 

program the data plane pipelines and functions of an 

SDN switch [2]. P4 is a high level and platform-

agnostic language. Data plane programmability 

includes, besides a custom pipeline (sequence of SDN 

match-action tables), configurable dataset (packet 

header, metadata), workflows (control), functions 

(actions) and stateful objects, allowing complex packet 

manipulation and processing procedures currently not 

available in standard SDN switches and that would 

require the intervention of the SDN controller. Packet 

headers may be defined simply by describing their 

structure in terms of fields and bytes, allowing existing 

(e.g., IP, Ethernet, TCP) and novel/experimental header 

parsers. The general scheme of a P4 switch follows the 

Portable Switch Architecture (PSA) framework and is 

shown in Fig. 1. The packet received by the input 

interface, is passed to the parser module, in charge to 

detect and dissect the supported protocols stack headers 

(e.g., Ethernet, MPLS, IP, TCP). The packet is then 

passed to the Ingress pipeline, triggering actions on the 

packet based on match conditions imposed by the flow 

tables definition. Moreover, the pipeline structure is not 

rigid (i.e., static sequence of tables). In fact, P4 allows 

a control section able to impose jump/goto/exclude 

conditions to the pipeline table enforcement and the 

order of execution. The ingress pipeline, besides all 

possible conditional actions and manipulations on the 

packet, is responsible for computing the target output 

interface and send the packet to the queue/buffers 

module. Finally, before retransmission, a further Egress 

pipeline is exploited for specific post-forwarding 

operations (e.g., multicasting).  

The P4 code is first compiled by the P4 compiler, 

generating a JSON descriptor, that is processed by the 

data plane runtime system (provided by the switch 

manufacturer) in order to generate the modules and the 

structures inside the device (either software or 

hardware). Moreover, the JSON is used to provide the 

switch control plane runtime (and optionally the SDN 

controller) with the functional structure of the switch in 

terms of flow tables (names, values, matches). This 
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way, the device exposes the desired custom pipeline to 

the SDN controller, allowing flow entry modifications 

at runtime by means of the SDN API (e.g., OpenFlow, 

Thrift, CLI). 

With respect to standard SDN switches using fixed 

pipeline and based on OpenFlow or Netconf/YANG, 

the P4 potentials are numerous. First, the custom parser 

section allows to define proprietary or novel protocol 

headers, which may be used by other P4 switches aware 

of such headers. Second, the custom pipelines and the 

control allows complex operations on the fields and 

values of the packets and on flow control and 

forwarding functions, including packet cloning, 

replication and recirculation in the pipeline. Third, the 

availability of custom packet metadata (fields and 

values defined in P4 used as additional per-packet 

parameters) allows to perform per-packet actions. 

Fourth, the stateful objects allow to define finite state 

machines inside the switch and describe complex states 

over which performing further forwarding selections or 

packet manipulations. 

One interesting feature provided by P4 is the 

independency with respect to the data plane platform. 

The same P4 program can be applied on a different 

device, e.g. a software switch running on general 

purpose hardware (also as virtual machine or virtual 

container), a bare metal switch or an FPGA equipped 

with the P4 driver framework. 

 

3   BENEFITS OF DATA PLANE 

PROGRAMMABILITY FOR THE EDGE/FOG 

 

Fig. 2 shows a general functional architecture of a 

fog/edge node equipped with P4 programmable 

capabilities. The node interconnects several 

heterogeneous network segments, including other fog 

metro areas, 5G front-haul and IoT gateways, as well 

as metro-core infrastructures (e.g., towards remote 

Data Centers). The node includes compute and storage 

resources for multi-tenant and secure edge computing 

applications [1], which require complex and careful 

traffic forwarding treatments based on the requirements 

of each traffic flow and service. This node may be 

employed also in different locations of the 5G network 

to perform specific function offloading (see sec. 3.E). 

As described in the following, P4 has the potential to 

provide innovative forwarding functionalities opening 

the way to novel edge capabilities and softwarization 

solutions. 

 

A) TRAFFIC ENGINEERING 

 

Current Edge-Cloud and Fog infrastructures data 

pipelining is subject to quasi-static policies for traffic 

forwarding, defined either by distributed control plane 

or enforced by an SDN Controller. For example, if 

dynamic traffic conditions determine congestions and 

service degradation, the OpenFlow switch has no 

means to dynamically adapt forwarding decisions. 

Indeed, it operates on each packet according to flow 

rules, with no stateful capabilities. In case of 

congestion, the switch can only exchange relevant 

statistics and wait for the Controller to modify match 

conditions and flow actions. However, this procedure 

is slow and may introduce scalability issues at the 

controller. 

Although P4 supports a limited traffic congestion 

control (i.e., priority change), the P4-based stateful 
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Figure 1. P4 switch: PSA architecture, P4 compilation and relationship with the SDN controller. 
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programmability can be exploited to dynamically 

modify match conditions and forwarding actions 

according to specific values of stateful parameters, 

such as meters or registers accounting for traffic rates 

or flow matches occurred during a specific time 

interval. This way, the SDN Controller can pre-instruct 

the switch with several forwarding options (e.g., finite 

state machines), eliminating the need to interact with 

the SDN Controller when critical network events occur 

(e.g. congestions). This opens the way to novel 

dynamic traffic engineering solutions, preserving 

centralized control while avoiding scalability issues at 

the Controller. 

 

B) IN-BAND TELEMETRY FOR LATENCY-

CRITICAL SERVICES 

 

Traditionally, QoS is applied on a per-flow basis by 

configuring high scheduling priority to high class 

services. However, all high-class packets compete for 

the same queuing resources. Overall, unequal treatment 

among services of same class may be experienced as 

well as relevant latency variations over time (i.e., jitter) 

among packets of the same service.  

In this context, the P4 language, despite not 

supporting yet a full queue scheduling 

programmability, may provide per-packet QoS with 

latency/jitter performance guaranteed exploiting in-

band telemetry (INT). In particular, a specifically 

designed INT header [8] can be added/modified to all 

high-class packets at each traversed node, reporting the 

time spent in the outgoing queues across the network. 

This way, by analyzing the INT data on cumulated 

delay, indirect dynamic packet scheduling may be 

implemented (i.e., dynamic per-packet classification 

and priority enforcement), minimizing jitter and 

maximum experienced end-to-end latency. In addition, 

INT statistics could be exploited to derive long term 

statistics of metro network latency/service 

performance, potentially leading to global network re-

optimizations to be enforced by the SDN Controller. 

Finally, such unprecedented amount of 

monitoring/telemetry and logging data may be the input 

of A.I.-based and machine learning aided adaptive 

strategies (see Fig. 2) to boost overall network 

performance [8]. 

 

C) SLICING AND MULTI-TENANCY 

 

The emerging 5G market will rely on data collected 

from heterogeneous devices, vehicles and sensors. 

While 5G nodes and IoT gateways are managed by the 

infrastructure owner (e.g., the Operator or the city 

municipality), IoT data are typically handled and 

Figure 2. P4 switch interfacing edge/fog computing resources and utilization in the 5G landscape. 
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managed by different service entities and tenants (e.g., 

the vehicle service company, the company in charge of 

traffic lights, etc.), which would highly benefit from 

virtualized architectures with native slicing 

functionalities for VNF. Each service or vertical 

requires a different packet treatment to assure, e.g, 

secure real-time control to tune traffic light settings, 

support autonomous driving and electric vehicles, 

operate on corporate or home building automations, 

provide security through CCTV, and improve 

environmental sustainability in many ways. In this 

multi-tenant context, P4-based edge/fog nodes have the 

potential to provide per-tenant P4 virtualized functions. 

This way, each tenant is able to operate on a slice of 

network resources, being able to cope with smart 

services operated over a dedicated network platform 

with pre-defined and programmed performance 

features in terms of sustainable bandwidth, latency, 

jitter, priority, availability and security.  

Fig. 3 shows an example of applicability of a virtual P4 

switch integrated with an IoT gateway for smart grid 

applications. In this scenario the network infrastructure 

owner (e.g., the municipality) is able to host services of 

different providers (e.g., railway information system, 

road traffic management, CCTV system). A virtual P4 

switch connects the virtual network functions of the 

different providers, implementing traffic segregation, 

slicing, dedicated QoS priority and security functions, 

switching traffic to the target gateway wireless 

interface, instantiating each service with its own 

requirements. 

 

D) CYBER-SECURITY 

 

Current stand-alone firewalls are exposed to internet 

with no other network barriers to stem attack/threats, 

which typically take advantage of security breaks at the 

edges (e.g., IoT devices). Moreover, firewalls are 

decoupled from switching elements, implemented over 

ad hoc, expensive hardware. OpenFlow-based firewalls 

have represented an interesting novelty in the firewall’s 

approach [9, 10]. However, despite the cost benefits of 

exploiting bare metal hardware, the lack of stateful 

capabilities and the need to always delegate decisions 

to the slow SDN Controller have limited their 

utilization. 

Thanks to the P4 native Deep Packet Inspection (DPI) 

capabilities to process the full packet header stack (i.e., 

including transport, session and application layers) 

combined with stateful functions, cyber security can be 

effectively implemented in each network switching 

element, including edge nodes and IoT gateways. For 

example, many cyber-attacks (e.g., Mirai IoT DDoS) 

leverage on address/port scan. Each packet alone, in 

stateless firewall implementations, would be simply 

considered as related to a genuine attempt to perform 

remote access. However, thanks to the stateful 

capabilities of the P4 node, by correlating the sequence 

of packets/scan, the attack can be detected and blocked 

already at network edges as well as at intermediate 

network nodes, successfully avoiding that such threats 

reach a DC gateway, and freeing resources to focus on 

more complex attacks. Moreover, by relying on 

telemetry and feature-based selected mirroring, 

correlations among selected threats affecting different 

nodes can lead to the creation of a distributed barrier 

against cyber-attacks [11]. 

 

E) 5G VNF OFFLOADING 

 

As depicted in Fig. 2, the 5G Mobile Edge Computing 

(MEC) employs a number of specific VNF to realize 

5G functional split between Distributed Units (DU) 

located in the fronthaul, Central Units (CU) at the edge 

and evolved packet core (EPC) functions. Some VNF 

may exploit P4 to be offloaded in an already existing 

software switch without resorting to dedicated virtual 

machines or additional and costly bare metal hardware 

[12], thanks to P4 programmability. For example, in the 

context of Serving Gateway (SGW) functions, the User 

Plane Function (UPF) VNF is responsible for GPRS 

tunneling protocol (GTP) encapsulation and 

decapsulation, traffic steering to single or multiple UPF 

nodes. Such functions are offloadable to virtual P4 

switches. A single P4 code may be employed to 

perform GTP encapsulation, decapsulation, inter-UPF 

swapping and related steering of the traffic. Moreover, 

Figure 3. Virtual P4 switch enabling acceleration of 

cached services in edge and IoT gateway. 
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P4 may be employed in an integrated way in both 

physical and virtual 5G network switches. With 

reference to Fig. 2, the combination of physical P4 top 

of the rack switches (P4S) and virtual intra-rack and 

intra-server switches (v-P4S) provides full SDN 

programmability of network functions for improved 

monitoring and tuning of 5G services under the same 

extended SDN control, drastically improving dynamic 

network performance and service reconfigurability.  

 

4   P4 USE CASES  

 

The five aforementioned use cases have been 

implemented and validated. For space reasons, we 

further detail two of them, including key code excerpts 

to show P4 compactness and suitability for IoT and 

virtual environments. 

 

A) TELEMETRY 

 

In a SDN network comprising P4-based edge, fog 

and aggregation nodes, INT header can be added to 

selected high priority flows to carry metadata as the 

time spent in queue at each node. Such metadata is 

normally not available in traditional switching 

solutions, but it has the potential to significantly 

improve the way QoS is implemented to low-latency 

services [7].  

Each traversed node, from the edge to the 

fog/aggregation up to the central office or cloud can 

update/append its own metadata and elaborate on the 

cumulated received value to take specific forwarding 

actions. Then, according to latency thresholds, 

scheduling priority could be dynamically modified on 

a per-packet basis, overall reducing the maximum 

experienced latency and jitter to time-sensitive flows. 

In addition, also selected mirroring could be 

implemented to forward selected INT statistics to 

external processing modules, e.g. implementing A.I.-

based long term elaborations for global traffic 

engineering re-optimizations. 

Fig. 4(a) shows an excerpt of the P4 code utilized to 

implement telemetry and dynamic low-latency QoS 

enforcement. First, the code defines a new packet 

header my_int_header_t that will be used to dissect the 

telemetry header. The header encloses a switch id, a 

UDP port target and a differential timestamp. This way 

the switch is able to detect, dissect and store the 

telemetry header values. Once performed preliminary 

packet processing, the ingress control section checks 

whether the differential timestamp carried out by the 

header is above a TH threshold. In the case of excessive 

jitter, the packet is sent to a P4-level modified pipeline 

branch, where packet priority is increased (through 

table set_priority) and packet is cloned towards a 

mirror interface for external processing (through table 

mirror). Standard pipeline is exploited for all the 

packets by implementing the telemetry header 

extraction (table remove_int_table) and the forward 

operation (table forward). 

 

B) ONLINE DDoS MITIGATION 

 

An implementation of DDoS mitigation inside a P4 

switch has been shown in [6], where a NetFPGA board 

was programmed with a P4 code exploiting stateful 

objects. With respect to stateless firewalls, the P4 

switch processing is able to store and correlate protocol 

field values belonging to the same sessions, thus 

identifying suspected flows (e.g., port scan behavior) 

that may be dynamically blocked. However, it may not 

be sufficient to detect complex distributed attacks, 

simultaneously affecting multiple fog/edge nodes. 

Selected mirroring is then introduced to enable an 

external monitor to correlate packets traversing 

different edge nodes and potentially part of a more 

complex attack.  

Fig. 4(b) shows an extract of P4 code exploiting novel 

stateful objects. For selected sessions, a register stores 

the last TCP port port_r and the number of related scan 

occurrences scan_r. The ingress control applies the 

update_scan_param action through the m_table table, 

header_type my_int_header_t { 

fields { 

switch_id : 32; 

enc_udp_dstport : 16; 

deq_timedelta : 32; }} 

……………………………………………

control ingress { 

if (valid (ipv4) and ipv4.ttl > 0) { 

apply (ipv4_lpm); 

apply (read_int_table); 

if (meta.deq_t_timedelta > TH) { 

apply (mirror); 

apply (set_priority); } 

apply (remove_int_table); 

apply (forward); 

}

} 

register port_r, scan_r {

width: 16;

instance_count: 1200; }

………………………………………………

action update_scan_param (r1) {

register_read (meta.prev_port, port_r, r1);

modify_field (meta.cur_port, tcp.dstPort);

register_read (meta.scan_occ, scan_r, r1);}

…………………………………………………

control ingress {

apply(m_table); //run update_scan_param

if (meta.prev_port == meta.cur_port - 1){

apply (attack);

apply (m_filter);}    

else{

apply(no_attack);

apply (m_go); }} b)a)

Figure 4. P4 codes excerpts: (a) in-band telemetry 

with proactive latency optimizator; (b) DDoS port 

scan mitigator. 
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storing the TCP port of the current session packet and 

retrieving the relative session stateful values as packet 

metadata. The scan condition (i.e., an incremental port 

pattern) determines a pipeline switch where, upon a 

given threshold, the packet is dropped, or subject to 

selected counter-actions, such as mirroring to a 

monitoring element in charge of intelligent 

correlations. 

 

5   VIRTUALIZED P4: PERFORMANCE AND 

DISCUSSION 

 

In order to show the P4 potentials in terms of 

performance in virtualized scenarios, the most common 

software switch employing the P4 language, the 

Behavioral Model version 2 (BMv2)[13], was 

employed implementing the P4 DDoS mitigator 

program (around 100 lines of code) over a standard 

Linux box server (Intel Xeon CPU E5-2620 6-core 

2.10GHz, 16GB RAM). In the Main (M) configuration 

the switch runs on the PC physical instance, while in 

Docker (D), runs as a virtual container. The switch is 

loaded with 1000 flow entries and attached to 10 

Gigabit Ethernet optical interfaces I1 and I2. TCP 

traffic (frame length 1500 byte) generated by the 

Spirent N2U Traffic Generator and Analyzer is injected 

in I1 and received by I2 crossing the BMv2 instance.  

Fig. 5 shows the throughput and the latency sustained 

by the switch as a function of the number of utilized 

cores (i.e., 1, 2 and 4). The maximum sustainable 

throughput is evaluated by considering the maximum 

tolerated packet loss ratio set to 10-4 and is reflected in 

the range of each plot. Results show that, using 4 cores, 

the switch is capable of sustaining more than 1Gb/s 

traffic while applying the DDoS mitigator, introducing 

an average latency below 150 μs. The utilization of a 

reduced number of cores impacts the maximum 

throughput linearly (1 core achieves around 200Mb/s, 

2 core around 500Mb/s) and the latency (reaching 

105μs and 140μs approaching the maximum 

throughput, respectively). This is because the software 

switch process always runs 4 parallel threads. A 

significant result is derived by comparing the main and 

the virtual container instances. In fact, the docker 

instance does not impact negatively on networking 

performance. Indeed, a slight improvement was 

observed due to a better thread scheduling among the 

available cores, which limits the 100% CPU load 

events that are at the basis of the BMV2 packet drop 

statistics. In light of this, the docker version achieves 

an improvement of 100-150 Mb/s of additional 

sustainable throughput. Moreover, docker assures no 

latency degradation, rather showing a slight 

improvement with a higher number of available cores 

serving BMV2 threads. Such effect was analyzed in the 

literature [14], confirming that containers are 

particularly suitable for virtualizing P4 stateful 

switches. 

 

A) P4 HIGH PERFORMANCE SWITCHES 

 

In order to prove that the virtualized P4 application can 

run at the 10G+ speed the DDoS mitigator was also 

tested with P4rt-OVS, a programmable virtual switch 

derived from the Open Virtual Switch (OVS) 

implementation [15]. The test setup was the same as for 

BMv2, but the P4 program was adapted to make it 

compatible with the architecture model of P4rt-OVS. 

Fig. 6 shows the throughput and latency observed for 

P4rt-OVS. Due to the fact P4rt-OVS is based on DPDK 

to poll packets from an interface, the measured latency 

Figure 6. P4rt-OVS DDoS mitigator latency and 

throughput: main (M) and Docker (D) instances 

50

75

100

125

150

150 350 550 750 950 1150

L
a
te

n
c
y
 (

µ
s
)

Throughput (Mb/s)

M1 M2 M4 D1 D2 D4

Figure 5. BMV2 DDoS mitigator latency and 

throughput: main (M) and docker (D) instances 



 

8 Submission to IEEE Network 

 

 

is comparable for every test scenario. The latency 

behavior is similar to results obtained with FPGAs, 

with stable floor not exceeding 20μs (using FPGA the 

floor was around 5us) under 90% interface nominal 

speed utilization [6].  However, similarly to BMv2, the 

latency observed for Docker was slightly lower than for 

physical machine, thus confirming the effectiveness of 

containerized solutions. It is worth to note that the test 

session successfully achieved the link speed (10G). 

Other tests confirmed wire speed performance at even 

40G for flows having a packet size of 1500 bytes. 

 

B) APPLICABILITY AND OPEN ISSUES 

 

General purpose hardware equipped with P4 

software switches is able to support stateful DPI with 

no packet loss. As results suggest, the P4 virtualized 

solution is effective and achievable at the 10 Gigabit/s 

scale and beyond for P4rt-OVS with latency ranges 

(i.e., 20μs) typical of legacy hardware switches, with 

the advantage to be deployed, migrated and attached 

on-demand to the network resorting to a container-

based orchestrator (e.g., Kubernetes) and a P4-enabled 

SDN controller (e.g., ONOS). This is particularly 

promising for large-scale applications running at the 

5G edge (e.g., smart city apps, video recognition, 

sensors for automotive), where selected traffic load 

(e.g., IoT gateway tenant, vertical industry slice) may 

be processed with zero-cost open-source P4 virtual 

function. Improved software switch results (e.g., 

throughput) are achievable by using hardware 

acceleration. However, the P4 software 

switch/container applicability may not always be 

directly extendible to central cloud systems (e.g., large 

DC) and the core network. In fact, P4 and hardware-

based solutions are already in place to sustain 100Gb/s 

and beyond throughput exploiting programmable bare 

metal switches and FPGA. The same DDoS mitigator 

program running on a Xilinx FPGA performs around 5 

μs latency with extremely stable performance [7], 

however at the expense of an increased hardware 

equipment cost. 

Open issues and applicability extensions are related to 

the development and the success of the P4 language. 

Novel P4 features such as packet generation, direct and 

fine queue management for traffic congestion control, 

extension and improved management of stateful 

objects, novel primitive action definitions, flexible 

definitions of the PSA internal architecture, may pave 

the way for a wider and potentially massive adoption in 

edge/fog and industrial networks. In particular, 

referring to next generation industrial networks and the 

advent of 6G, the availability of high precision queue 

management and deterministic latency bound behavior, 

such as in Time Sensitive Networks (TSN), directly 

mapped as performance functions in both P4 language 

and related virtual switch platform environments, will 

probably play a significant step towards a fully 

converged, programmable and  autonomic high 

performance softwarized networking.    

 

6   CONCLUSIONS 

 

This paper showed the significant potential of P4-based 

data plane programmability that will enable flexible 

and advanced programmable functions in a SDN/NFV 

edge scenario serving IoT, 5G and metro networks in a 

multi-tenancy environment. Novel P4 programs 

enforcing stateful capabilities will open the way to the 

development of novel services and applications with 

stringent requirements in terms of latency, QoS and 

autonomic reactions upon complex network events 

directly at the data plane. Assessments of use cases and 

results show the applicability of P4 switches even as 

virtual container in the future 5G edge nodes, 

demonstrating the flexibility and the effectiveness of 

such technology to boost, integrate and complete the 

SDN/NFV paradigm. 
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