
Submission to IEEE Network

Enhancing 5G SDN/NFV Edge with

P4 Data Plane Programmability

F. Paolucci

CNIT, 56124 Pisa, Italy

F. Cugini

CNIT, 56124 Pisa, Italy

P. Castoldi

Scuola Superiore Sant’Anna, 56124 Pisa, Italy

T. Osiński

Orange Labs & Warsaw University of Technology,

Warsaw, Poland

Abstract—5G Networks revolution will be enabled by deep integration of Software Defined

Networking (SDN) and Network Function Virtualization (NFV) to support multi-tenancy, per-user

and per-application quality of service and experience. However, full softwarization and current

SDN platforms may not be able to sustain the complexity and the heterogeneity of different

requirements, e.g. strict latency, jitter, high precision traffic and advanced monitoring. For such

services, SDN/NFV needs to be boosted not only considering orchestration and control plane,

but also data plane programmability. In this paper, the potential of the P4 language is illustrated

with the aim to show its disruptive novel functionalities at the data plane level currently not

available in a SDN/NFV network, opening the way to new orchestration frameworks and enabling

a novel autonomic and flexible network at the edge. Use cases, assessments and softwarized

performance results are proposed and discussed in the edge and IoT scenario, targeting

advanced traffic engineering, cyber security, multi-tenancy, 5G offloading, and telemetry, to

demonstrate the feasibility of such approach.

1 INTRODUCTION

 THE ADVENT of beyond 5G Networks is

driving relevant enhancements in all the

communication and IT segments to convey the

requirements of Software Defined Networking (SDN)

and Network Function Virtualization (NFV) [1].

Networks will be SDN-configurable and orchestrated

to support multi-tenant environments by means of

network slicing and fully virtualized service

applications. These network functions will be

automatically deployed as service chains to offer an

unprecedented quality of transmission, service, and

experience with yet unreached flexibility and cost

reduction. Softwarization is one of the key drivers of

this novel service-oriented framework [1]. SDN control

2 Submission to IEEE Network

plane is foreseen as the candidate solution to support

automated network configurability by means of

standard API (e.g., OpenFlow, Netconf/YANG),

separating and abstracting the data plane from the

orchestration and control layer. However, current SDN

platforms will not be able to sustain the complexity

disclosed by heterogeneous softwarized networks, such

as next generation disaggregated metro networks

connecting data centers with 5G fronthaul, edge/fog

nodes supporting IoT gateways serving massive

sensors and devices. In such scenarios, the current SDN

control lacks advanced and automatic forwarding

capabilities, per-packet treatment and manipulation

functions, high precision traffic monitoring/telemetry,

and services with extreme requirements (e.g., zero

jitter, bounded low latency). So far, a limited set of

operation have been demanded to the SDN controller.

However, this introduces undesirable delay and

scalability issues, preventing its practical deployment

as network bitrates increase.

To overcome such limitations, a new layer of

softwarization has been introduced, providing the

capability to program the switch data plane through

high-level API and languages. The P4 language is

emerging as the largest and most considered initiative

[2]. Originally designed for intra-data center scenarios,

P4 is rapidly attracting attention for advanced

SDN/NFV softwarization solutions. Among the

different languages, platforms and frameworks

proposed for data plane programmability, including

stateful functions, such as OpenState [3], RMT [4] and

FAST [5], the P4 framework is gaining consensus and

support by means of many vendors (e.g.,

Intel/Barefoot, Xilinx, Mellanox, Broadcom) and open

source initiatives (e.g., ONOS and OpenDayLight).

In this paper, we first summarize the P4 technology and

capabilities. Then, also resorting to our previous works

on P4 [6][7], we present and discuss a number of use

cases and novel opportunities enabled by the P4

language implemented in 5G edge/fog nodes, including

dynamic traffic control for load balancing and

offloading, latency-bounded service implementation,

and novel stateful operations for embedded cyber

security functions. Finally, we present an experimental

assessment of selected use cases, providing novel P4

containerized software switch performance evaluation

with different platforms in the edge/IoT context and a

critical discussion on its benefits, applicability and

open issues.

2 P4 DATA PLANE PROGRAMMABILITY

The P4 language was introduced to define and

program the data plane pipelines and functions of an

SDN switch [2]. P4 is a high level and platform-

agnostic language. Data plane programmability

includes, besides a custom pipeline (sequence of SDN

match-action tables), configurable dataset (packet

header, metadata), workflows (control), functions

(actions) and stateful objects, allowing complex packet

manipulation and processing procedures currently not

available in standard SDN switches and that would

require the intervention of the SDN controller. Packet

headers may be defined simply by describing their

structure in terms of fields and bytes, allowing existing

(e.g., IP, Ethernet, TCP) and novel/experimental header

parsers. The general scheme of a P4 switch follows the

Portable Switch Architecture (PSA) framework and is

shown in Fig. 1. The packet received by the input

interface, is passed to the parser module, in charge to

detect and dissect the supported protocols stack headers

(e.g., Ethernet, MPLS, IP, TCP). The packet is then

passed to the Ingress pipeline, triggering actions on the

packet based on match conditions imposed by the flow

tables definition. Moreover, the pipeline structure is not

rigid (i.e., static sequence of tables). In fact, P4 allows

a control section able to impose jump/goto/exclude

conditions to the pipeline table enforcement and the

order of execution. The ingress pipeline, besides all

possible conditional actions and manipulations on the

packet, is responsible for computing the target output

interface and send the packet to the queue/buffers

module. Finally, before retransmission, a further Egress

pipeline is exploited for specific post-forwarding

operations (e.g., multicasting).

The P4 code is first compiled by the P4 compiler,

generating a JSON descriptor, that is processed by the

data plane runtime system (provided by the switch

manufacturer) in order to generate the modules and the

structures inside the device (either software or

hardware). Moreover, the JSON is used to provide the

switch control plane runtime (and optionally the SDN

controller) with the functional structure of the switch in

terms of flow tables (names, values, matches). This

Submission to IEEE Network 3

way, the device exposes the desired custom pipeline to

the SDN controller, allowing flow entry modifications

at runtime by means of the SDN API (e.g., OpenFlow,

Thrift, CLI).

With respect to standard SDN switches using fixed

pipeline and based on OpenFlow or Netconf/YANG,

the P4 potentials are numerous. First, the custom parser

section allows to define proprietary or novel protocol

headers, which may be used by other P4 switches aware

of such headers. Second, the custom pipelines and the

control allows complex operations on the fields and

values of the packets and on flow control and

forwarding functions, including packet cloning,

replication and recirculation in the pipeline. Third, the

availability of custom packet metadata (fields and

values defined in P4 used as additional per-packet

parameters) allows to perform per-packet actions.

Fourth, the stateful objects allow to define finite state

machines inside the switch and describe complex states

over which performing further forwarding selections or

packet manipulations.

One interesting feature provided by P4 is the

independency with respect to the data plane platform.

The same P4 program can be applied on a different

device, e.g. a software switch running on general

purpose hardware (also as virtual machine or virtual

container), a bare metal switch or an FPGA equipped

with the P4 driver framework.

3 BENEFITS OF DATA PLANE

PROGRAMMABILITY FOR THE EDGE/FOG

Fig. 2 shows a general functional architecture of a

fog/edge node equipped with P4 programmable

capabilities. The node interconnects several

heterogeneous network segments, including other fog

metro areas, 5G front-haul and IoT gateways, as well

as metro-core infrastructures (e.g., towards remote

Data Centers). The node includes compute and storage

resources for multi-tenant and secure edge computing

applications [1], which require complex and careful

traffic forwarding treatments based on the requirements

of each traffic flow and service. This node may be

employed also in different locations of the 5G network

to perform specific function offloading (see sec. 3.E).

As described in the following, P4 has the potential to

provide innovative forwarding functionalities opening

the way to novel edge capabilities and softwarization

solutions.

A) TRAFFIC ENGINEERING

Current Edge-Cloud and Fog infrastructures data

pipelining is subject to quasi-static policies for traffic

forwarding, defined either by distributed control plane

or enforced by an SDN Controller. For example, if

dynamic traffic conditions determine congestions and

service degradation, the OpenFlow switch has no

means to dynamically adapt forwarding decisions.

Indeed, it operates on each packet according to flow

rules, with no stateful capabilities. In case of

congestion, the switch can only exchange relevant

statistics and wait for the Controller to modify match

conditions and flow actions. However, this procedure

is slow and may introduce scalability issues at the

controller.

Although P4 supports a limited traffic congestion

control (i.e., priority change), the P4-based stateful

In Parser
Ingress

pipeline

Queues

/buffers Egress

pipeline

Out

Runtime control plane

SDN controller

Data plane

runtime

Driver

P4 program

P4 compiler

Stateful

objects

Modules deployment

packets

Read/write flow entries

P4 switch

Figure 1. P4 switch: PSA architecture, P4 compilation and relationship with the SDN controller.

4 Submission to IEEE Network

programmability can be exploited to dynamically

modify match conditions and forwarding actions

according to specific values of stateful parameters,

such as meters or registers accounting for traffic rates

or flow matches occurred during a specific time

interval. This way, the SDN Controller can pre-instruct

the switch with several forwarding options (e.g., finite

state machines), eliminating the need to interact with

the SDN Controller when critical network events occur

(e.g. congestions). This opens the way to novel

dynamic traffic engineering solutions, preserving

centralized control while avoiding scalability issues at

the Controller.

B) IN-BAND TELEMETRY FOR LATENCY-

CRITICAL SERVICES

Traditionally, QoS is applied on a per-flow basis by

configuring high scheduling priority to high class

services. However, all high-class packets compete for

the same queuing resources. Overall, unequal treatment

among services of same class may be experienced as

well as relevant latency variations over time (i.e., jitter)

among packets of the same service.

In this context, the P4 language, despite not

supporting yet a full queue scheduling

programmability, may provide per-packet QoS with

latency/jitter performance guaranteed exploiting in-

band telemetry (INT). In particular, a specifically

designed INT header [8] can be added/modified to all

high-class packets at each traversed node, reporting the

time spent in the outgoing queues across the network.

This way, by analyzing the INT data on cumulated

delay, indirect dynamic packet scheduling may be

implemented (i.e., dynamic per-packet classification

and priority enforcement), minimizing jitter and

maximum experienced end-to-end latency. In addition,

INT statistics could be exploited to derive long term

statistics of metro network latency/service

performance, potentially leading to global network re-

optimizations to be enforced by the SDN Controller.

Finally, such unprecedented amount of

monitoring/telemetry and logging data may be the input

of A.I.-based and machine learning aided adaptive

strategies (see Fig. 2) to boost overall network

performance [8].

C) SLICING AND MULTI-TENANCY

The emerging 5G market will rely on data collected

from heterogeneous devices, vehicles and sensors.

While 5G nodes and IoT gateways are managed by the

infrastructure owner (e.g., the Operator or the city

municipality), IoT data are typically handled and

Figure 2. P4 switch interfacing edge/fog computing resources and utilization in the 5G landscape.

Submission to IEEE Network 5

managed by different service entities and tenants (e.g.,

the vehicle service company, the company in charge of

traffic lights, etc.), which would highly benefit from

virtualized architectures with native slicing

functionalities for VNF. Each service or vertical

requires a different packet treatment to assure, e.g,

secure real-time control to tune traffic light settings,

support autonomous driving and electric vehicles,

operate on corporate or home building automations,

provide security through CCTV, and improve

environmental sustainability in many ways. In this

multi-tenant context, P4-based edge/fog nodes have the

potential to provide per-tenant P4 virtualized functions.

This way, each tenant is able to operate on a slice of

network resources, being able to cope with smart

services operated over a dedicated network platform

with pre-defined and programmed performance

features in terms of sustainable bandwidth, latency,

jitter, priority, availability and security.

Fig. 3 shows an example of applicability of a virtual P4

switch integrated with an IoT gateway for smart grid

applications. In this scenario the network infrastructure

owner (e.g., the municipality) is able to host services of

different providers (e.g., railway information system,

road traffic management, CCTV system). A virtual P4

switch connects the virtual network functions of the

different providers, implementing traffic segregation,

slicing, dedicated QoS priority and security functions,

switching traffic to the target gateway wireless

interface, instantiating each service with its own

requirements.

D) CYBER-SECURITY

Current stand-alone firewalls are exposed to internet

with no other network barriers to stem attack/threats,

which typically take advantage of security breaks at the

edges (e.g., IoT devices). Moreover, firewalls are

decoupled from switching elements, implemented over

ad hoc, expensive hardware. OpenFlow-based firewalls

have represented an interesting novelty in the firewall’s

approach [9, 10]. However, despite the cost benefits of

exploiting bare metal hardware, the lack of stateful

capabilities and the need to always delegate decisions

to the slow SDN Controller have limited their

utilization.

Thanks to the P4 native Deep Packet Inspection (DPI)

capabilities to process the full packet header stack (i.e.,

including transport, session and application layers)

combined with stateful functions, cyber security can be

effectively implemented in each network switching

element, including edge nodes and IoT gateways. For

example, many cyber-attacks (e.g., Mirai IoT DDoS)

leverage on address/port scan. Each packet alone, in

stateless firewall implementations, would be simply

considered as related to a genuine attempt to perform

remote access. However, thanks to the stateful

capabilities of the P4 node, by correlating the sequence

of packets/scan, the attack can be detected and blocked

already at network edges as well as at intermediate

network nodes, successfully avoiding that such threats

reach a DC gateway, and freeing resources to focus on

more complex attacks. Moreover, by relying on

telemetry and feature-based selected mirroring,

correlations among selected threats affecting different

nodes can lead to the creation of a distributed barrier

against cyber-attacks [11].

E) 5G VNF OFFLOADING

As depicted in Fig. 2, the 5G Mobile Edge Computing

(MEC) employs a number of specific VNF to realize

5G functional split between Distributed Units (DU)

located in the fronthaul, Central Units (CU) at the edge

and evolved packet core (EPC) functions. Some VNF

may exploit P4 to be offloaded in an already existing

software switch without resorting to dedicated virtual

machines or additional and costly bare metal hardware

[12], thanks to P4 programmability. For example, in the

context of Serving Gateway (SGW) functions, the User

Plane Function (UPF) VNF is responsible for GPRS

tunneling protocol (GTP) encapsulation and

decapsulation, traffic steering to single or multiple UPF

nodes. Such functions are offloadable to virtual P4

switches. A single P4 code may be employed to

perform GTP encapsulation, decapsulation, inter-UPF

swapping and related steering of the traffic. Moreover,

Figure 3. Virtual P4 switch enabling acceleration of

cached services in edge and IoT gateway.

v-P4switch

BW = low
Latency = high
Priority = high

4G/5G Wi Fi ZigBee

BW = high
Latency = med
Priority = low

veth1 veth2 veth3

veth
4

veth
5

veth
6

veth0

To
metro/
cloud

Infrastructure
orchestration/control

Service
management

BW = low
Latency = low
Priority = high

P4/SDN
config

VM/container
config

Service
1

Service
2

Service
3

6 Submission to IEEE Network

P4 may be employed in an integrated way in both

physical and virtual 5G network switches. With

reference to Fig. 2, the combination of physical P4 top

of the rack switches (P4S) and virtual intra-rack and

intra-server switches (v-P4S) provides full SDN

programmability of network functions for improved

monitoring and tuning of 5G services under the same

extended SDN control, drastically improving dynamic

network performance and service reconfigurability.

4 P4 USE CASES

The five aforementioned use cases have been

implemented and validated. For space reasons, we

further detail two of them, including key code excerpts

to show P4 compactness and suitability for IoT and

virtual environments.

A) TELEMETRY

In a SDN network comprising P4-based edge, fog

and aggregation nodes, INT header can be added to

selected high priority flows to carry metadata as the

time spent in queue at each node. Such metadata is

normally not available in traditional switching

solutions, but it has the potential to significantly

improve the way QoS is implemented to low-latency

services [7].

Each traversed node, from the edge to the

fog/aggregation up to the central office or cloud can

update/append its own metadata and elaborate on the

cumulated received value to take specific forwarding

actions. Then, according to latency thresholds,

scheduling priority could be dynamically modified on

a per-packet basis, overall reducing the maximum

experienced latency and jitter to time-sensitive flows.

In addition, also selected mirroring could be

implemented to forward selected INT statistics to

external processing modules, e.g. implementing A.I.-

based long term elaborations for global traffic

engineering re-optimizations.

Fig. 4(a) shows an excerpt of the P4 code utilized to

implement telemetry and dynamic low-latency QoS

enforcement. First, the code defines a new packet

header my_int_header_t that will be used to dissect the

telemetry header. The header encloses a switch id, a

UDP port target and a differential timestamp. This way

the switch is able to detect, dissect and store the

telemetry header values. Once performed preliminary

packet processing, the ingress control section checks

whether the differential timestamp carried out by the

header is above a TH threshold. In the case of excessive

jitter, the packet is sent to a P4-level modified pipeline

branch, where packet priority is increased (through

table set_priority) and packet is cloned towards a

mirror interface for external processing (through table

mirror). Standard pipeline is exploited for all the

packets by implementing the telemetry header

extraction (table remove_int_table) and the forward

operation (table forward).

B) ONLINE DDoS MITIGATION

An implementation of DDoS mitigation inside a P4

switch has been shown in [6], where a NetFPGA board

was programmed with a P4 code exploiting stateful

objects. With respect to stateless firewalls, the P4

switch processing is able to store and correlate protocol

field values belonging to the same sessions, thus

identifying suspected flows (e.g., port scan behavior)

that may be dynamically blocked. However, it may not

be sufficient to detect complex distributed attacks,

simultaneously affecting multiple fog/edge nodes.

Selected mirroring is then introduced to enable an

external monitor to correlate packets traversing

different edge nodes and potentially part of a more

complex attack.

Fig. 4(b) shows an extract of P4 code exploiting novel

stateful objects. For selected sessions, a register stores

the last TCP port port_r and the number of related scan

occurrences scan_r. The ingress control applies the

update_scan_param action through the m_table table,

header_type my_int_header_t {

fields {

switch_id : 32;

enc_udp_dstport : 16;

deq_timedelta : 32; }}

……………………………………………

control ingress {

if (valid (ipv4) and ipv4.ttl > 0) {

apply (ipv4_lpm);

apply (read_int_table);

if (meta.deq_t_timedelta > TH) {

apply (mirror);

apply (set_priority); }

apply (remove_int_table);

apply (forward);

}

}

register port_r, scan_r {

width: 16;

instance_count: 1200; }

………………………………………………

action update_scan_param (r1) {

register_read (meta.prev_port, port_r, r1);

modify_field (meta.cur_port, tcp.dstPort);

register_read (meta.scan_occ, scan_r, r1);}

…………………………………………………

control ingress {

apply(m_table); //run update_scan_param

if (meta.prev_port == meta.cur_port - 1){

apply (attack);

apply (m_filter);}

else{

apply(no_attack);

apply (m_go); }} b)a)

Figure 4. P4 codes excerpts: (a) in-band telemetry

with proactive latency optimizator; (b) DDoS port

scan mitigator.

Submission to IEEE Network 7

storing the TCP port of the current session packet and

retrieving the relative session stateful values as packet

metadata. The scan condition (i.e., an incremental port

pattern) determines a pipeline switch where, upon a

given threshold, the packet is dropped, or subject to

selected counter-actions, such as mirroring to a

monitoring element in charge of intelligent

correlations.

5 VIRTUALIZED P4: PERFORMANCE AND

DISCUSSION

In order to show the P4 potentials in terms of

performance in virtualized scenarios, the most common

software switch employing the P4 language, the

Behavioral Model version 2 (BMv2)[13], was

employed implementing the P4 DDoS mitigator

program (around 100 lines of code) over a standard

Linux box server (Intel Xeon CPU E5-2620 6-core

2.10GHz, 16GB RAM). In the Main (M) configuration

the switch runs on the PC physical instance, while in

Docker (D), runs as a virtual container. The switch is

loaded with 1000 flow entries and attached to 10

Gigabit Ethernet optical interfaces I1 and I2. TCP

traffic (frame length 1500 byte) generated by the

Spirent N2U Traffic Generator and Analyzer is injected

in I1 and received by I2 crossing the BMv2 instance.

Fig. 5 shows the throughput and the latency sustained

by the switch as a function of the number of utilized

cores (i.e., 1, 2 and 4). The maximum sustainable

throughput is evaluated by considering the maximum

tolerated packet loss ratio set to 10-4 and is reflected in

the range of each plot. Results show that, using 4 cores,

the switch is capable of sustaining more than 1Gb/s

traffic while applying the DDoS mitigator, introducing

an average latency below 150 μs. The utilization of a

reduced number of cores impacts the maximum

throughput linearly (1 core achieves around 200Mb/s,

2 core around 500Mb/s) and the latency (reaching

105μs and 140μs approaching the maximum

throughput, respectively). This is because the software

switch process always runs 4 parallel threads. A

significant result is derived by comparing the main and

the virtual container instances. In fact, the docker

instance does not impact negatively on networking

performance. Indeed, a slight improvement was

observed due to a better thread scheduling among the

available cores, which limits the 100% CPU load

events that are at the basis of the BMV2 packet drop

statistics. In light of this, the docker version achieves

an improvement of 100-150 Mb/s of additional

sustainable throughput. Moreover, docker assures no

latency degradation, rather showing a slight

improvement with a higher number of available cores

serving BMV2 threads. Such effect was analyzed in the

literature [14], confirming that containers are

particularly suitable for virtualizing P4 stateful

switches.

A) P4 HIGH PERFORMANCE SWITCHES

In order to prove that the virtualized P4 application can

run at the 10G+ speed the DDoS mitigator was also

tested with P4rt-OVS, a programmable virtual switch

derived from the Open Virtual Switch (OVS)

implementation [15]. The test setup was the same as for

BMv2, but the P4 program was adapted to make it

compatible with the architecture model of P4rt-OVS.

Fig. 6 shows the throughput and latency observed for

P4rt-OVS. Due to the fact P4rt-OVS is based on DPDK

to poll packets from an interface, the measured latency

Figure 6. P4rt-OVS DDoS mitigator latency and

throughput: main (M) and Docker (D) instances

50

75

100

125

150

150 350 550 750 950 1150

L
a
te

n
c
y
 (

µ
s
)

Throughput (Mb/s)

M1 M2 M4 D1 D2 D4

Figure 5. BMV2 DDoS mitigator latency and

throughput: main (M) and docker (D) instances

8 Submission to IEEE Network

is comparable for every test scenario. The latency

behavior is similar to results obtained with FPGAs,

with stable floor not exceeding 20μs (using FPGA the

floor was around 5us) under 90% interface nominal

speed utilization [6]. However, similarly to BMv2, the

latency observed for Docker was slightly lower than for

physical machine, thus confirming the effectiveness of

containerized solutions. It is worth to note that the test

session successfully achieved the link speed (10G).

Other tests confirmed wire speed performance at even

40G for flows having a packet size of 1500 bytes.

B) APPLICABILITY AND OPEN ISSUES

General purpose hardware equipped with P4

software switches is able to support stateful DPI with

no packet loss. As results suggest, the P4 virtualized

solution is effective and achievable at the 10 Gigabit/s

scale and beyond for P4rt-OVS with latency ranges

(i.e., 20μs) typical of legacy hardware switches, with

the advantage to be deployed, migrated and attached

on-demand to the network resorting to a container-

based orchestrator (e.g., Kubernetes) and a P4-enabled

SDN controller (e.g., ONOS). This is particularly

promising for large-scale applications running at the

5G edge (e.g., smart city apps, video recognition,

sensors for automotive), where selected traffic load

(e.g., IoT gateway tenant, vertical industry slice) may

be processed with zero-cost open-source P4 virtual

function. Improved software switch results (e.g.,

throughput) are achievable by using hardware

acceleration. However, the P4 software

switch/container applicability may not always be

directly extendible to central cloud systems (e.g., large

DC) and the core network. In fact, P4 and hardware-

based solutions are already in place to sustain 100Gb/s

and beyond throughput exploiting programmable bare

metal switches and FPGA. The same DDoS mitigator

program running on a Xilinx FPGA performs around 5

μs latency with extremely stable performance [7],

however at the expense of an increased hardware

equipment cost.

Open issues and applicability extensions are related to

the development and the success of the P4 language.

Novel P4 features such as packet generation, direct and

fine queue management for traffic congestion control,

extension and improved management of stateful

objects, novel primitive action definitions, flexible

definitions of the PSA internal architecture, may pave

the way for a wider and potentially massive adoption in

edge/fog and industrial networks. In particular,

referring to next generation industrial networks and the

advent of 6G, the availability of high precision queue

management and deterministic latency bound behavior,

such as in Time Sensitive Networks (TSN), directly

mapped as performance functions in both P4 language

and related virtual switch platform environments, will

probably play a significant step towards a fully

converged, programmable and autonomic high

performance softwarized networking.

6 CONCLUSIONS

This paper showed the significant potential of P4-based

data plane programmability that will enable flexible

and advanced programmable functions in a SDN/NFV

edge scenario serving IoT, 5G and metro networks in a

multi-tenancy environment. Novel P4 programs

enforcing stateful capabilities will open the way to the

development of novel services and applications with

stringent requirements in terms of latency, QoS and

autonomic reactions upon complex network events

directly at the data plane. Assessments of use cases and

results show the applicability of P4 switches even as

virtual container in the future 5G edge nodes,

demonstrating the flexibility and the effectiveness of

such technology to boost, integrate and complete the

SDN/NFV paradigm.

ACKNOWLEDGMENT

This project has received funding from the ECSEL Joint

Undertaking (JU) BRAINE Project under grant agreement

No 876967. The JU receives support from the European

Union’s Horizon 2020 research and innovation

programme and from MIUR (Italy).

 REFERENCES
1. K. Samdanis and T. Taleb. "The Road beyond 5G: A

Vision and Insight of the Key Technologies." IEEE
Network 34.2 (2020): 135-141.

2. P. Bosshart, et al., “P4: Programming protocol-
independent packet processors,” SIGCOMM Conf.
2014.

3. G. Bianchi, M. Bonola, A. Capone, and C. Cascone,
“OpenState: Programming platform-independent
stateful OpenFlow applications inside the switch,” ACM
SIGCOMM Conf. 2014.

Submission to IEEE Network 9

4. P. Bosshart et al., “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN,” ACM SIGCOMM Conf., 2013.

5. M. Moshref et al., “Flowlevel state transition as a new
switch primitive for SDN,” in Proc. 3rd Workshop Hot
Topics Softw. Defined Netw. (HotSDN), Chicago, IL,
USA, 2014, pp. 61–66.

6. F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F.
Cugini, and P. Castoldi, "P4 Edge Node Enabling
Stateful Traffic Engineering and Cyber Security" J. Opt.
Commun. Netw. 11, A84-A95 (2019).

7. F. Cugini, P. Gunning, F. Paolucci, P. Castoldi, and A.
Lord, "P4 In-Band Telemetry (INT) for Latency-aware
VNF in Metro Networks," OFC 2019, OSA, M3Z.6.

8. J. Hyun et al., "Towards knowledge-defined networking
using in-band network telemetry," NOMS Conf. 2018.

9. Nagai R et al "Design and Implementation of an
OpenFlow-Based TCP Syn Flood Mitigation"
MobileCloud Conf. ‘18.

10. T. Dargahi, "A Survey on the Security of Stateful SDN
Data Planes", IEEE Commun. Surv. & Tut.,19 (3), 2017.

11. F. Musumeci et al, “Machine-learning-assisted DDoS
attack detection with P4 language”, ICC 2020.

12. C. Shen et al, “A Programmable and FPGA-accelerated
GTP Offloading Engine for Mobile Edge Computing in
5G Networks”, IEEE INFOCOM 2019.

13.“BMV2, Behavioral Model version 2”,
https://github.com/p4lang/behavioral-model.

14. J. Struye et al., "Assessing the value of containers for
NFVs: A detailed network performance study," in Proc.
CNSM 2017.

15. T. Osiński et al., “P4rt-OVS: Programming Protocol-
Independent Runtime Extensions for Open vSwitch
using P4,” in Proc. IFIP Networking 2020.

Francesco Paolucci received the M.S. degree in

Telecommunications Engineering from the University of

Pisa, and the Ph.D. degree from Scuola Superiore

Sant’Anna, Pisa, Italy, in 2009. In 2008 he was granted a

Research Merit Scholarship at the Istitut National de le

Recherche Scientifique (INRS), Canada. Currently, he is

Senior Researcher at CNIT, Pisa, Italy. His main research

interests are in the field of advanced SDN network control

plane, network fault tolerance, inter-domain traffic

engineering, data plane programmability, security and

confidentiality. He is co-author and contributor of 2 IETF

Internet Drafts, more than 160 international publications

and filed 4 patents. He is co-author of the “5G-PPP Phase

1 Security Landscape” released by the 5G-PPP Security

Working Group.

Filippo Cugini received the M.S. degree in

Telecommunication Engineering from the University of

Parma, Italy. Since 2001, he has been with the National

Laboratory of Photonic Networks, Consorzio Nazionale

Interuniversitario per le Telecomunicazioni (CNIT), Pisa,

Italy. His main research interests include theoretical and

experimental studies in the field of communications and

networking. In particular, the focus is on Ethernet,

GMPLS and PCE protocols and architectures, software

defined networking (SDN), Segment Routing, OpenFlow

and P4. He is an IEEE member and he is co-author of 14

patents and more than 200 international publications.

Piero Castoldi (PhD) has been Professor at Scuola

Superiore Sant’Anna, Pisa, Italy since 2001. He spent

abroad at Princeton University (USA) overall about two

years in 1996, 1997, 1999, 2000. He is currently Leader of

the “Networks and Services” research area at Scuola

Superiore Sant’Anna. His research interests cover

telecommunications networks and system both wired and

wireless, and more recently reliability, switching

paradigms and control of optical networks, including

application-network cooperation mechanisms for cloud

networking. He is an IEEE Senior Member and he is

author of more than 400 international publications.

Tomasz Osiński works as an R&D Expert at Orange Labs

Poland. He received a B.Sc. degree and a M.Sc, degree in

telecommunications from Warsaw University of

Technology, in 2016 and 2018. His main research areas

are Network Functions Virtualization and Software-

Defined Networking including cloud-native VNF’s

design, virtualization performance, network orchestration

and programmable data plane. Currently, he works for his

PhD focusing on leveraging programmable data plane and

the P4 language to accelerate cloud-native network

functions.

