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1. Executive summary 

This section is brief, and will describe  

• Create an AI to improve the quality of semiconductor manufacturing with a 

microservice architecture to deploy in a Kubernetes cluster. 

• Find the optimal exposure time and yields from the optimization and regression 

models of wafer fabrication 

• BRAINE platform provides the resource of edge computing to realize the complex 

computation 

• The impact on KPI’s compared to the state of the art 

• BRAINE platform supports reducing in computation time of manufacturing 

optimization and increasing the wafer yields 
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2. Use case overview  

2.1. Background 

Securely connecting manufacturers’ devices both locally and to the cloud is paramount for 

customers to take up the connected service offering. People living in smart homes and 

working in smart buildings can benefit from the seamless interaction of the sensors. 

Infineon-enabled solutions in energy, light management, health care, and building 

operations can improve the quality of life and deliver substantial cost savings. In BRAINE, 

Infineon will continue investigating new technologies for edge computing that enable the 

extensive use of AI for different technology fields, in view of further commercialization. 

Infineon sees BRAINE as an opportunity to explore looking forward to real-time 

semiconductor manufacturing optimization. 

2.2. Motivation 

The motivation of this use case is to move from cloud-operated interval planning to more 

real-time on-premise planning in the semiconductor supply chains and manufacturing for 

Infineon one of the lead users of the Arrowhead Framework (2013-2017, EUR 65 million, 

81 participants) and Tools (2019-2021, EUR 91 million, 81 participants) enabled by the 

EMDC. Arrowhead was and is Europe’s largest automation and digitization project 

enabling the creation and engineering of IoT-based automation systems. Results of 

Arrowhead’s WP1 (Architecture & Concepts for the digital industry), and WP7 

(Productive4.0 framework) of Productive4.0 (2017 to 2020, EUR 109 million, 106 partners) 

are used. In those two WPs already some adaptation (e.g., with the Semantic Web-based 

Digital Reference) of Arrowhead toward the semiconductor environment was done. The 

distributed nature of the Arrowhead Framework based on local clouds allows to separate 

operations and activities, ensuring e.g., engineering, operation, maintenance, evolution, 

real-time platform, security, and safety, while still having a common integration platform 

that will be merged with BRAINE results coming out from the research work packages. 

Infineon the leading consortium member of Productive4.0 will not only provide the use 

case but also supports the research to merge former H2020 ECSEL work with BRAINE. 

Infineon especially brings in its know-how on practical industrial Semantic Web and 

ontologies as well as supply chain knowledge to make the transfer from research to use 

case more efficient. 
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2.3. Objective 

• More accurate process control of gate thickness and width, exposure resistance, 

yields, and supply and turn it into an automatic process with the support of 

BRAINE. 

• Integrate and value-add the BRAINE EMDC federated distributed platform as an 

appliance that deploys big data and AI tools to complement Arrowhead for the 

benefit of semiconductor supply chains and supply chains containing 

semiconductors. 

2.4. Goals (KPI’s) 

• Reduce the calculation time of optimization and regression models for wafer 

manufacturing. 

• Increase the yield percentage for the batch production. 
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3. Implementation and Integration 

Describe how the use case was implemented and integrated with the BRAINE platform 

here. 

3.1. Use case demonstration 

The goal of the use case is to complete the prototype of algorithm to predict the best 

lithography exposure time to improve gate resistance. The gate resistance is the function 

of the gate area, which is the multiplication of gate width and layer thickness. The layer 

thickness is fixed when the substrate of the wafer is formed. In contrast, the gate width is 

a variable that can be decided by the exposure time set by the machine. 

 

Figure 1: The form of gate area 

𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑓(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑖𝑚𝑒) = 𝑓(𝑎𝑟𝑒𝑎) = 𝑙𝑎𝑦𝑒𝑟 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 ∗ 𝑔𝑎𝑡𝑒 𝑤𝑖𝑑𝑡ℎ 

3.2. Use case implementation 

• Collect process data and create an AI to predict the optimal lithography exposure 

time to maximize yield. 

• Collect process data and transform them into Qualified Synthetic Data (QSD) to 

use for the AI. 

• Develop an algorithm as a microservice which will use the AI model to predict 

parameters in real time. 

• Deploy the microservice in the Kubernetes cluster of Infineon with the OpenVPN 

profile provided by CNIT. 

3.3. Integration with the BRAINE platform  

• BRAINE supports to generate QSD based on a few wafer measure points. 

• BRAINE allows dynamic adjustment in real-time the light exposure time for each 

coordinate field within a wafer. 

• BRAINE accelerates the computation of optimization and regression models to 

increase yield through edge computing 



 

12 

 

4. Results 

4.1. Data complexity in the semiconductor supply chain 

The data domain of the semiconductor supply chain can be represented by the Digital 

Reference ontology introduced in Productive 4.0. It is a supply chain-related Semantic 

Web mirror of the semiconductor industry depicting a combination of different supply chain 

domains and concepts to enable use cases. 

 

Figure 2: The Digital Reference in the semiconductor supply chain 

Further, the domain of the application focuses on the manufacturing step: lithography. 

Therefore, the intercorrelation of the gate oxide, width, thickness plays a critical role in the 

data analysis of the use case. 
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Figure 3: Datalake ontology representation 

 

4.2. Qualified Synthetic Data (QSD) 

Gaussian Distribution is the method used for generating Synthetic Data. Wafer, Lot, Die 

data will also be included in the Synthetic Data. This distribution function is included in the 

Copulas library, so it is the main function for generating synthetic data. 

4.3. Advance of QSD 

When the dataset is more complex and the number of columns is high, accuracy is lost. A 

more robust model that adapts to more complex datasets is needed: Neural Networks. 

These networks are trainable, they learn to generate patterns through prediction and 

correction. Two neural network architectures: Generative Adversarial Networks (GAN) 

and Variational Autoencoders (VAE). 

4.4. Simulation of impact on wafer fabrication 

We include temperature, pressure, humidity, and thickness parameters in the Qualified 

Synthetic to simulate the wafer fabrication measures. Qualified Synthetic Data is 

generated for each die in the Wafer Map, which is a map showing the performance 

semiconductor devices on a substrate as a color-coded grid. 
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Figure 4: The wafer map 

4.5. Optimization model 

The goal of the optimization model is to maximize yields while constraining exposure time. 

We define the following elements required for the model development, including a set, 

parameters, decision variables, a objective function, and constraints. 

Set: 

𝑖 ∈ {1, … , 𝑛}: a finite set of exposure field 

Parameter: 

𝑝𝑖: yield on exposure field i per area  

𝑡𝑖: gate thickness on exposure field i 

𝐶 : exposure time of a wafer  

Decision variables: 

𝑤𝑖: gate width on exposure field i 

𝑥𝑖: decide if the exposure field i is exposed 

Objective function: 

𝑚𝑎𝑥 ∑ 𝑝𝑖𝑡𝑖𝑤𝑖𝑥𝑖

𝑛

𝑖=1

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑦𝑖𝑒𝑙𝑑𝑠 
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Constraints: 

𝑠. 𝑡.  ∑ 𝑡𝑖𝑤𝑖𝑥𝑖

𝑛

𝑖=1

≤ 𝐶   𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

𝑥 ∈ {0,  1}𝑛  𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

𝑤𝑖 ≥ 0   𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

4.6. Application Deployment on Kubernetes 

 

 

Figure 5: Create docker containers 

Building Docker Containers 

• Build the server Docker container 

The Dockerfile for the server microservice is located within the server directory, navigate 

to that directory and run the following command from within that directory: 

docker build -t server-image:latest . 

This will create a Docker image of the server microservice. 

• Build the client Docker container 

Same is ture for the client microservice, navigate to the client directory and run the 

following command from within that directory: 

docker build -t client-image:latest . 

This will create a Docker image of the client microservice. 
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Registering Docker Containers 

• Register the server Docker container 

To register the server Docker container, we need to have access to a container registry. 

In this case, we will use our internally hosted BRAINE container registry, which is 

accessible via the IP address 172.30.101.1. First, we log in to our registery using the 

docker login command: 

docker login 172.30.101.1 

Then, tag the server image with our registery IP address 172.30.101.1 and the name 

of the repository we want to push the image to: 

docker tag server-image:latest 172.30.101.1/server-image:latest 

Finally, we push the server image to our registery: 

docker push 172.30.101.1/server-image:latest 

• Register the client Docker container 

We follow the same steps as above to register the client Docker container, but use the 

client image instead: 

docker tag client-image:latest 172.30.101.1/client-image:latest 

docker push 172.30.101.1/client-image:latest 

Deploying Docker Containers 

 

Figure 6: Deploy docker containers 

• Deploy the server Docker container 
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To deploy the server Docker container, we will use a container orchestration tool, namely 

Kubernetes. The kubernetes.yaml file is located in the project root, we can create the 

deployment by running the following command from within the project root directory: 

kubectl apply -f kubernetes.yaml 

This will create a Kubernetes deployment of both defined microservices. 

• Perform some Kubernetes checkups 

We can check the status of the deployment by running: 

kubectl get deployments 

We expect something like this to be the output: 

Step 3 Example Output 

NAME     READY   UP-TO-DATE   AVAILABLE   AGE 

client   1/1     1            1           4m47s 

server   1/1     1            1           4m47s 

 

To check whether the pods are running, we can use this: 

kubectl get pods 

Our output should match the following: 

Step 4 Example Output 

NAME          READY   STATUS    RESTARTS   AGE 

client-75f8   1/1     Running   0          4m52s 

server-7656   1/1     Running   0          4m52s 

 

Lastly for more information we can look into the events by running the command: 

kubectl get events 

We should have something simmilar to the following as a result: 

Step 5 Example Output 

LAST SEEN   TYPE     REASON              OBJECT                         

MESSAGE 

5m9s        Normal   Scheduled           pod/client-75f8                

Successfully assigned default/client-75f8 to uc4-w1 

5m8s        Normal   Pulling             pod/client-75f8                

Pulling image "172.30.101.1:5000/client_py" 
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4m49s       Normal   Pulled              pod/client-75f8                

Successfully pulled image "172.30.101.1:5000/client_py" in 

19.196572875s 

4m48s       Normal   Created             pod/client-75f8                

Created container client-py 

4m48s       Normal   Started             pod/client-75f8                

Started container client-py 

5m9s        Normal   SuccessfulCreate    replicaset/client-

75f8         Created pod: client-75f8 

5m9s        Normal   ScalingReplicaSet   deployment/client              

Scaled up replica set client-75f8 to 1 

 

5m9s        Normal   Scheduled           pod/server-7656                

Successfully assigned default/server-7656 to uc4-w2 

5m8s        Normal   Pulling             pod/server-7656                

Pulling image "172.30.101.1:5000/server_py" 

4m35s       Normal   Pulled              pod/server-7656                

Successfully pulled image "172.30.101.1:5000/server_py" in 

33.424867625s 

4m34s       Normal   Created             pod/server-7656                

Created container server-py 

4m34s       Normal   Started             pod/server-7656                

Started container server-py 

5m9s        Normal   SuccessfulCreate    replicaset/server-

7656         Created pod: server-7656 

5m9s        Normal   ScalingReplicaSet   deployment/server              

Scaled up replica set server-7656 to 1 

 

Run the deployed application 

After deploying the app we can run the following command to execute the application 

kubectl exec client-75f8 -- curl localhost:5000 

- where client-75f8 is our client container 

- and everything after the -- are the commands we execute in the pod 

 

As a result we get the html file: 

braine@UC4-m:~$ kubectl exec client-75f8 -- curl localhost:5000 % 

Total % Received % Xferd Average Speed Time Time Time Current 

Dload Upload Total Spent Left Speed 100 519 100 519 0 0 18 0 

0:00:28 0:00:28 --:--:-- 126 <!-- homepage.html --> <!doctype 

html> <html lang="en"> <head> <title>Prediction of 

photolithography width</title> </head> <body> <h1>Creating QSD 

dataset and testing it on the Braine_solver_cplex algorithm to 

measure the computing time </h1> <p> Data sent: ext_mv = 10.5, 

ext_min = 11.8, ext_max = 14.2, spec_upper = 7, ext_q1 = 6, 
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ext_q3 = 3, raw_values = 12, ext_ewma_mv = 4, ext_ms_mv = 20, 

ext_mv_ucl = 10 </p> <p>computation_time: 131.878357 </p> </body> 
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5. Impact 

5.1. Comparison to existing systems 

The previous system used by Infineon is not able to consider multiple manufacturing 

parameters in the optimization process. In contrast, BRAINE enables real-time 

optimization by loading all the parameters required in production. The following table 

shows the statistical results of the execution time from 20 iterations of 10,000 samples. 

Average Standard 

deviation 

Minimum Maximum Medium 

0.0162 s 0.0027 s 0.0121 s 0.0205 s 0.0166 s 

 

5.2. Potential Impact to the semiconductor wafer manufacturing 

• Improve the current state of decision making for gate width, directly leading to 

optimal exposure time and yields for chip production.  

• Improve the development of secured cloud connection-enabled applications; these 

can range from motion detection up to situational awareness, by leveraging AI and 

machine learning algorithms. 

• Enable a more reliable decision making with support of data integration. 

5.3. Advantages of the BRAINE platform 

• Provide a platform for real-time computation and reduce the calculation time to 

optimize manufacturing yields. 

• Support efficient data integration from sensors into the cloud service. 

5.4. Business solutions and economic advantages of BRAINE for 

semiconductor wafer fabrication 

• Drastically reduce the computation time to make optimal manufacturing planning 

and decision 

• Increase wafer production yields in every manufacturing batch and improve overall 

production quality. 
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6. Conclusion 

Supported by BRAINE, Infineon improves the current state of real-time decision making 

of wafer production. This enables a more reliable decision making, due to more data 

integration in the cloud. The BRAINE platform is an opportunity for the supply chain 

department to increase production yields and improve the overall quality of the supply 

chain management at Infineon. 

 


