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1. Executive summary 

This section describes the BRAINE use case on Robotics 4.0. It includes: 

• The overall objective of the use case 

• The new techniques and technologies being used by the use case 

• How the BRAINE platform integrates and enables these technologies 

• The impact on KPI’s compared to the state of the art 

• The potential business impact of the use case and platform 

 

 

Fig. 1: BRAINE Architecture 
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2. Use case overview  

In the era of Industry 4.0, where automation and connectivity are revolutionizing 

manufacturing processes, flexible production has emerged as a critical aspect of efficient 

and adaptive manufacturing systems. This use case explores employing of a multiagent 

platform and motif discovery tool to enhance flexibility in production processes. 

A multiagent platform is a software framework that enables the coordination and 

communication of multiple autonomous agents. By utilizing a multiagent platform, 

manufacturers can establish a flexible production environment that adapts to changing 

demands and conditions in real-time. Each autonomous agent represents a specific 

element of the production system, such as machines, robots, or workstations. These 

agents can collaborate, negotiate, and make decentralized decisions to optimize 

production efficiency. 

In addition to the multiagent platform, the use of a motif discovery tool further enhances 

the flexibility of production systems. The motif discovery tool analyses historical process 

data to identify recurring patterns or motifs. These motifs represent efficient process 

configurations or sequences that can be reused to optimize future production scenarios. 

2.1. Background and Motivation 

The adaptability and versatility required in modern production processes necessitate a 

novel approach that extends beyond the machines themselves and their local control 

systems. The scope of higher-level systems traditionally managed by IT systems, such as 

Manufacturing Execution Systems (MES) and Enterprise Resource Planning systems 

(ERP), must also be reevaluated. In this context, the focus of this use case is on the MES 

level, aiming to propose a multi-agent platform that enables the implementation of a 

distributed MES. This system will be responsible for overseeing the production process, 

conducting backward diagnostics, and providing supervision. 

Drawing upon existing distributed production systems, a distributed algorithm for 

production planning will be employed. This algorithm will utilize agents that represent 

production machines and actively participate in the planning process. This approach 

allows for the handling of significantly more computationally complex tasks compared to 

centralized planning methods. 

To ensure optimal performance, predictive supervision is crucial. To address this need, a 

machine learning tool developed by FS will be utilized for domain-agnostic motif/pattern 

discovery in multidimensional time series data (MOD). This tool is capable of detecting 
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various production states of observed devices, identifying anomalies within production 

processes, and facilitating association analysis of operational and product parameters, 

such as product quality. MOD incorporates data preprocessing capabilities, serving as a 

supportive tool for data exploration. As part of the BRAINE project, modifications will be 

made to enable MOD to operate on edge devices and provide real-time inputs to an upper-

level cloud-based model (Digital Twin) based on the current timing parameters of the 

observed devices. The Digital Twin will assume the role of supervising the production line, 

detecting higher-level anomalies within the production process. 

Although the initial deployment of this system will occur on a testbed for an Industry 4.0 

demonstration production line at CTU, it is important to highlight that the methods tested 

in this use case can also be applied to already operational industrial production lines. 

2.2. Objective 

Based on the benefits of the multiagent platform (decentralized decision-making, adaptive 

resource allocation, fault tolerance, redundancy, etc), and of motif discovery tool (process 

optimization, predictive maintenance, continuous improvement, etc.) were established 

nonfunctional objectives described below and functional objectives described in form of 

deployment topology and KPIs. 

2.2.1. Nonfunctional objectives: 

• Scalability and Flexibility: The ability to flexibly upgrade manufacturing 

processes as fast as possible can lower the time to market for new products 

and give companies a significant edge over competitors. Thanks to 

BRAINE's automatic workload management, rollouts of changes in the 

production systems or rollout of new additional components can happen 

immediately. 

• Heterogeneity: Devices, software, and services of various brands and 

types usually accumulate in the factories during the time. Simultaneously, 

data from those services and devices shouldn't leave a manufacturing 

facility because of security. The powerful edge solution supporting the 

interaction of various services and devices would allow the integration of 

multiple data sources into a better-informed solution. 
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2.2.2. Functional objective: 

One of the functional objective, that is based on the nonfunctional ones is deployment 

topology depicted in the following figure. In the figure, the blue-filled shapes symbolize 

agents, the orange ones symbolize the digital shadow, the purple ones symbolize the 

subpart recognition, the pink ones symbolize the position calibration, the red ones the 

motif discovery. Shapes with only bold borderline symbolize groups of units. 

 

 

Fig. 2: scenario 

 

2.3. Goals (KPI’s) 

All goals (KPIs) for the use case 3 are stated in the following table. Each KPI is provided 

with a name, brief description, and evaluation criteria, that precisely describes how the 

KPI can be evaluated. 

 

KPI 1 Ratio of data processed on Edge to data sent to Cloud 

Description Expected reduction from 1:1 (baseline) to 1:5 
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Evaluation There are 3 phases of KPI evaluation: 

1) Preliminary synthetic dataset evaluated in Docker 

on standard PC 

2) Manufacturing process dataset evaluated on 

Siemens Edge devices in CIIRC Testbed9 

3) Manufacturing process dataset evaluated on 

BRAINE EMDC 

 

In case of remote evaluation, the data acquisition will be 

evaluated locally in CIIRC Testbed and the acquired dataset will 

be evaluated on EMDC remotely. 

KPI 2 Mean delay of deviation detection event 

Description Baseline is mean delay of 500 ms + 50% of pattern duration, 

expected reduction is to 500 ms + 25% of pattern duration. 

Evaluation There are 3 phases of KPI evaluation: 

1) Preliminary synthetic dataset evaluated in Docker 

on standard PC 

2) Manufacturing process dataset evaluated on 

Siemens Edge devices in CIIRC Testbed 

3) Manufacturing process dataset evaluated on 

BRAINE EMDC 

In case of remote evaluation, the data acquisition will be 

evaluated locally in CIIRC Testbed and the acquired dataset will 

be evaluated on EMDC remotely. 

KPI 3 Setup and commissioning time 

Description One day setup and commissioning of EMDC, including secured 

registration into an edge device 

Evaluation Measure average time of deployment 

KPI 4 Commissioning time of robotic systems 

Description In comparison to conventional/empirical approaches, the AI-

enhanced process to identify and optimize the system 

parameters is expected to finish 10x faster. 

Evaluation Compare average time of multiple scenarios run by both 

approaches 
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KPI 5  Scalability and modularity of manufacturing lines 

Description By flexible reconfiguration, the production time reduced by 20% 

Evaluation Compare average time of multiple production scenarios run by 

MES unable of configure production for multiple various 

products vs. MES that is able to 

KPI 6  Image based subpart recognition 

Description Minimum of 90% accuracy for all parameters 

Evaluation Compute average accuracy of 100 recognitions 

KPI 7 Image based calibration of position 

Description More accurate than build in solution in KMP and KMR 

Evaluation Compute average accuracy of 100 recognitions 
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3. Implementation and Integration 

The use case 3 takes into account three application scenarios: 

• Warehouse (Fig. 3); 

• Production line (Fig. 4); 

• Diagnostic (Digital Twin). 

 

 

Fig. 3: Warehouse scenario 

 

Item Description 

KMP Kuka The KMP 1500 is an omnidirectional, mobile platform that 

navigates autonomously and flexibly. Combined with the 

latest KUKA Sunrise controller, it provides modular, versatile 

and above all mobile production concepts for the industry of 

the future. 

KMR Iiwa The autonomous KMR Iiwa robot is HRC-capable and mobile. 

It combines the strengths of the sensitive LBR iiwa lightweight 

robot with those of a mobile, autonomous platform. The KMR 

iiwa is location-independent and highly flexible – the perfect 

basis for meeting the requirements of Industrie 4.0. 
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Cybertech The industrial robots of the KR CYBERTECH family represent 

the world’s largest range of models in the low payload 

category with the greatest power density. They are ideally 

suited to space-saving cell concepts and provide top 

performance – with particularly low follow-up costs 

Agilus The KR AGILUS is our compact six-axis robot that is designed 

for particularly high working speeds. Different versions, 

installation positions, reaches and payloads transform the 

small robot into a precision artist. 

Montrac Station Montrac Shuttle - product details available at 

https://www.montratec.de/en/products/  

 

Table 7: Testbed components 

 

 

Fig. 4: Production Line scenario 

 

  

 

https://www.montratec.de/en/products/
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3.1. Use case implementation 

Use case production planning is based on a multiagent system. Particular 

agents represent specific hardware resources or product agents that communicate with 

each other to achieve the requested goal, i.e., producing the specific product. 

3.1.1. Multi Agent platform 

The multiagent approach enables flexibility of the planning and orchestration. The overall 

production plan is divided into smaller tasks (operations of the recipe), which are planned 

separately, assuming resources available at the time of planning. This makes the planning 

problem much more straightforward compared to the case when a full plan is calculated 

at the beginning of production. The multiagent approach facilitates the management of the 

resources and products at the runtime. New resources may be added/removed from the 

platform, and new products may be ordered during runtime without changing the 

platform's configuration or interrupting ongoing production. 

 

The physical system and the products are described semantically in the ontology together 

with capabilities and properties (e.g., the machines' manufacturing activities, the 

composition of the product, and its production recipe). The recipe concept in the ontology 

specifies operations that must be performed during the production and their order. The 

overall plan splits into a sequence of jobs representing specific tasks performed by the 

machine. The top-level job represents a single operation of the production recipe. Within 

the job, the agent submits requests to other agents to satisfy prerequisites needed for the 

job (e.g., the robot may need to supply material and transport the product to its station 

before executing its task). Receiving the request from the agent invokes a new job, which 

may, in turn, submit requests to other agents. 

 

The entire life cycle of production negotiation is based on the Plan-Commit-Execute 

protocol. The execution of a particular production recipe step is performed in three phases, 

the Planning phase, the Commit phase, and the Execute phase. The diagram of the 

negotiation flow is depicted in Fig. 5. 
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Fig. 5: Inter-agent negotiation life cycle 

Within the Planning phase, a full plan of tasks is created. This phase splits into two steps. 

First, the request is sent to the directory service agent. The directory service agent 

performs semantic matchmaking and returns a list of agents capable of executing the job. 

The request from the product agent is then sent to the suitable agents.   

 

Upon request from the product agent, the machine agent checks its resources, and if 

needed, the machine agent may submit requests to other agents to fulfill all requirements 

needed to perform the job. If the machine agent can satisfy all job requirements, it 

evaluates the job's overall price and sends success results back to the product agent. The 

product agent then evaluates responses obtained from all machine agents and selects the 

best option.  

 

During the commit phase, the product agent requests all agents involved in the selected 

plan sequence to reserve their resources needed to perform the job. These agents are 

thus dedicated to the specific job and cannot accept other jobs.  

 

Within the execute phase, the product agent commands the machine agents to perform 

the tasks in the sequence of the plan. The hardware agents send commands to the 

machines and monitor the execution of the tasks. Upon successful execution, the product 

agent is notified and may start following the operation of its production recipe.  

 

The multiagent platform implements FIPA specifications. These specifications 

define standards for agent communication to facilitate understanding of agents and 

interoperability of different multiagent systems. FIPA specifications define elements of 

the message that determine the meaning of the message and how the message should 
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be further processed. This includes, for example, the identification of the agent to whom 

the response should be sent. FIPA specifications also introduce the concept of so-

called performative, which identifies the message's type, whether it is a request message, 

response message, reject the message, etc. 

 

The agents themselves can be divided into three fundamental groups: 

• Service agents; 

• Product agents; 

• Hardware agents.  

The service agents provide the basic functionality of the platform, such as service 

discovery, monitoring, communication with external product order service. Product agents 

represent the Products to be manufactured. It is related to the specific product description 

in the ontology. The product agent sequentially negotiates the execution of particular 

operations composing the product recipe. The core of the platform includes the service 

agents and the product agents. The hardware agents may be running as separate 

applications outside the platform core. The architecture is displayed in Fig. 6. 

 

Fig. 6: Platform architecture 

 

Registry is the key element of the platform. The registry provides three main capabilities: 
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1. manages running services.  

2. registers available capabilities .  

3. registers free resources 

 

Order agent collects orders from external Product order service and creates and initiates 

corresponding Product agent..  

Distributed logger collects and stores log messages from all agents. 

Hardware agent – represents robots on the production line, both Kuka8 Agilus robots, and 

Kuka IIWA. The manufacturing activity provided by these robots is Pick and Place. The 

KukaRobot agent provides two Job implementations, namely AssembleJob and 

SupplyMaterialJob. Following diagram Fig. 7 shows the workflow of the AssembleJob 

planning logic. The job is created upon request from the product agent. The job checks 

whether the requested material is available in the local warehouse and if not, the robot 

agent requests a supply of the material from other agents. Then it is checked whether the 

(partly assembled) product is already present at one of the stations used by the robot. If 

not, the robot agent requests reservation of the station and requests transport of the 

product or an empty shuttle to the reserved station. Finally, the robot's task, i.e., the Pick 

and place activity itself, is added to the plan. The response with the planning result and 

cost for the job is sent to the product agent. 

Additional service agents can be implemented within the platform to facilitate monitoring 

of the performance, networking, etc 
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Fig. 7: Assemble job workflow 

 

Station agent – since some of the stations on the production line are shared between two 

robots, the system must ensure that a given station is reserved for the job executed by a 

specific robot. For this reason, Station agents are implemented within the platform. These 

are passive agents. They don't actively negotiate with other agents but only commit to 

requesting plans if they are not already committed to others. The station agents also 

provide information about occupancy to other agents if requested. 

Shuttle agent – the shuttle agent represents a particular Montrac shuttle on the 

production line. The manufacturing activity is transporting, and the shuttle agent provides 

two job implementations, TransportJob and ClearStationJob. The workflow of the 

transport job is displayed in Fig. 8. 
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Fig. 8: Transport job workflow 

3.1.2. Motif Discovery platform 

The Motif Discovery tool (MOD) consists of three core building blocks. The Motif 

Discovery module, Motif Learning module, and the Online Detection module. MOD tool 

provides solution for the anomaly detection in observable manufacturing processes.To 

achieve this, any single instance of MOD analyzes data from a logical machine. A logical 

device is a collection of sensory data streams assumed to have some systematic 

interdependency (e.g., collection of temperature, speed, and position data from a motor). 

For analysis of a single logical device, a separate instance of MOD is started. 

The Motif Discovery module consumes a batch of sensory data and produces a dataset 

of segments of the given time series. This process is both memory and computationally 

intensive and is done offline. 

The Motif Learning module consumes an annotated dataset of time series segments and 

learns a detection model. This is also a resource-intensive task, and it is done offline. 

The Online Detection module requires a detection model as an input at the beginning of 

its lifecycle. It subscribes to streams of sensory data of the modeled logical device and 

starts detecting learned motifs online. 

When available, this module connects to a high-level model of the manufacturing process 

and communicates its findings to improve detection performance and to efficiently store a 

high-level discrete log of events in the cloud. The cloud connection is proxied through a 

pre-processing node, which compresses/decompresses the data sent to/from the cloud. 

Additionally, a monitoring frontend application can subscribe to the MOD tool to fine-tune 

its behavior. 
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The overview is summarized in Fig. 9. 

 

 

Fig. 9: MOD scheme - The deployment scheme for the MOD tool differentiated by logical 

devices and by task modules 

 

Data Processing Pipelines Detail 

The Motif discovery pipeline assumes that data is stored in the InfluxDB, from which all 

the time series are queried into memory, preprocessed and then searched for unknown 

repeating patterns, i.e., motifs. After the search, motifs are clustered according to similarity 

and stored in patterns container in MongoDB in a form of timestamp references to the raw 

original time series. This step ends by preparing the labeled training dataset ready for 

learning pipeline. 
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Fig. 10: Motif Discovery pipeline 

 

The learning pipeline obtains the labelled dataset (Patterns Dictionary) and trains a set of 

probabilistic detection models (Models Dictionary) and stores them both in on-premises 

MongoDB and in the cloud MongoDB, if cloud is connected. 

Fig. 11: Detection models learning pipeline 

 

After learning, the detection can be started. Detection pipeline (Fig. 12) consumes data 

from Apache Kafka topics and feeds them into the detection steps, such as pre-

processing, segmentation, pattern detection and finally the result presentation. The 

resulting detection is sent to the Digital Twin (DTwin) deployed in the cloud, if the cloud is 

connected. 
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Fig. 12: Detection pipeline 

 

There are several data pumps that can transfer live data streams from various protocols 

into Kafka topics. In our use case, we utilize the MQTT data collection from the robots in 

CIIRC Testbed and we utilize the Telegraf data pump to feed the online data into Kafka 

for detection and into the InfluxDB for motif discovery. 

 

Fig. 13: Detection models example 

 

In Fig. 13, we see an example of the frontend interface for approval of detection models 

with mean expected value and 2-sigma confidence interval. 
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3.2. Integration with the BRAINE platform  

Each part of the use case, i.e. the multiagent platform and the motif discovery tool, is 

deployed in containers that run on the BRAINE platform. Each individual agent from the 

multiagent system is deployed in a separate container. 

MOD application utilizes the platforms optimized scheduler through the SLA, where the 

main advantage is the latency guarantee for the online detection of operational states of 

machines. BRAINE’s telemetry is used to collect and present data about the state of the 

processing of the data during Motif Discovery and model Learning as well as health 

monitoring of the running online detection. The edge to cloud communication utilizes the 

BRAINE’s service mesh component. 
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4. Results 

4.1. Data Collection 

MOD Tool 

The data was collected from 3 days of operation of the 3 industrial robots in the CIIRC 

Testbed. The mean sampling rate was 73 ms and the speed, position and current was 

measured per each of the 6 axis of each robot. The behaviour of robots showed significant 

repetitive patterns separated by periods of resting time. The resting periods are easily 

detectable, and they were removed by pre-processing step, so the KPI evaluation is done 

only on the meaningful active-time segments. 

4.2. Data Analysis 

MOD Tool 

The testing CNIT Testbed cluster was distributed between CNIT premises, where the 3 

worker nodes were located – databases and computing was done there. The CTU 

premises holds the detached 4th worker node that was used for data collection. This 

distribution of nodes also impacted the up-front latency in the online detection task as the 

data needs to be transferred over the internet through VPN tunnel to the CNIT virtual 

worker nodes. This obstacle is expected to be eliminated during the final testing on the 

BRAINE EMDC hardware. 

4.3. KPIs 

KPI 1 Ratio of data processed on Edge to data sent to Cloud Status: 

Result: Reduction ratio on test dataset collected on robots in CIIRC 

Testbed show results ranging from 1:6 to , exceeding the 

target of 1:5. This ratio was achieved while keeping 

acceptable reconstruction quality for business level of detail. 

The high-detailed raw data are stored on-premises in the 

InfluxDB. 

Achieved 

KPI 2 Mean delay of deviation detection event Status: 

Result: Tests on Siemens devices show the mean latency of 

detection to be 500 ms + 25 % of duration of the detection 

pattern. The up-front latency cost is expected to be lowered 

Achieved 
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by deploying the solution to the BRAINE EMDCs when those 

are available. 

KPI 3 Setup and commissioning time Status: 

Result: After tests of multiagent platform on in IDE the system was 

deployed to the Kubernetes cluster running in Testbed for 

Industry 4.0. The whole process of creating containers for 

each agent and deploying them to the cluster took less than 

two hours. A test run of the multiagent platform production 

line took another hour. Altogether, setup and commissioning 

time was under three hours which is much less than the 

baseline. The KPI is therefore met. 

Achieved 

KPI 4 Commissioning time of robotic systems Status: 

Result: During the reconstruction of the Testbed, the topology of the 

production line was changed. Commissioning of the new 

topology took two weeks (10 days). When simulating the 

same change in topology with the multiagent platform, we 

were able to commission the new topology in under a day (5 

hours). The KPI is therefore met. 

Achieved 

KPI 5 Scalability and modularity of manufacturing lines Status: 

Result: When testing the scalability the test scenarios were to add 

one to five robots to the original setup and measure 

reconfiguration time. When subtracting the time to spawn a 

new container the reconfiguration was every time 

instantaneous (under 1s). At the same time, the system was 

able to do the reconfiguration on the run which is something 

the traditional approach is not capable to do. The KPI was 

therefore met 

Achieved 

KPI 6 Image based subpart recognition Status: 

Result: During evaluation of the detection accuracy, the camera was 

positioned within a distance range of 0.7m to 1.2m from the 

tags/objects being detected. The average accuracy obtained 

from subpart recognition was ±0.788 mm measured in XYZ 

Achieved 
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coordinates. The accuracy achieved for the yaw angle was 

within a range of ±0.023°. The KPI is met. 

KPI 7 Image based calibration of position Status: 

Result: The KMR robot's initial positioning accuracy was determined 

to be within a range of ±1cm in the XY plane and ±2.5° in 

terms of angle. By utilizing a camera mounted on the robot's 

hand and employing a positioning algorithm that combines 

the transformation derived from subpart recognition with the 

known transformation from the camera to the center of the 

robot, the final accuracy of the robot was improved to be 

within a range of ±0.4cm in the xy plane and ±1.9% in terms 

of angle. 

Achieved 
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5. Impact 

Discuss the use case results in comparison to the state of the art, and also discuss the 

potential economic impact of the use case and overall BRAINE platform here. 

 

5.1. Comparison to existing systems 

In today's complex and dynamic world, efficient planning is crucial for businesses to stay 

competitive and achieve their goals. Traditional approaches like centralized planning or 

manual planning have their merits, but they often fall short when it comes to addressing 

the complexity and unpredictability of modern challenges. 

- Distributed Decision-Making: Centralized planning relies on a single decision-

maker or a small group of decision-makers who bear the burden of analyzing 

information, making decisions, and coordinating actions. This approach can 

quickly become overwhelmed when faced with large-scale or rapidly changing 

scenarios. In contrast, multiagent planning empowers multiple agents to make 

decisions autonomously based on their local knowledge and expertise. By 

distributing decision-making authority, multiagent planning leverages the collective 

intelligence and enables more efficient problem-solving. 

- Adaptability to Uncertainty: In today's fast-paced business landscape, 

uncertainty is the new norm. Centralized planning and manual planning often 

struggle to adapt to unexpected events or changing conditions. Multiagent 

planning, on the other hand, embraces uncertainty as an inherent part of the 

system. Agents in a multiagent planning framework can react independently and 

rapidly to new information, adjust their plans accordingly, and collaborate with 

other agents in real-time. This adaptability allows businesses to respond effectively 

to unforeseen challenges and seize emerging opportunities. 

- Scalability and Resource Optimization: Centralized planning often faces 

scalability limitations as decision-making becomes increasingly complex and 

resource-intensive. Multiagent planning overcomes this challenge by distributing 

the planning process across multiple agents, enabling parallel processing and 

resource optimization. Agents can independently allocate resources, balance 

workloads, and coordinate tasks, resulting in improved efficiency and reduced 

bottlenecks. The decentralized nature of multiagent planning facilitates scaling 

operations smoothly and accommodating growth without overburdening any single 

decision-maker. 
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5.2. Potential Impact to the robotics and manufacturing 

The architecture developed for use case 3, with its emphasis on decentralized decision-

making, adaptive resource allocation, and advanced analytics, brings a significant boost 

to production efficiency. `Industrial robots equipped with agents utilizing machine learning 

algorithms, and artificial intelligence capabilities with the use of advanced, even virtual, 

sensors can streamline repetitive tasks, eliminate errors, and optimize production 

workflows. This not only reduces costs but also ensures consistent quality and faster time-

to-market for products. 

Traditional manufacturing processes often struggle to respond swiftly to changing market 

demands. However, flexible production architecture provides the agility required for quick 

adaptations. With modular robotic systems and flexible automation cells, manufacturers 

can easily reconfigure production lines to accommodate new product variations or 

customization requests. This adaptability enables manufacturers to address evolving 

customer needs promptly and capitalize on emerging market opportunities without 

significant disruptions or retooling costs. 

Overall manufacturing process generates vast amounts of data from various sensors, 

machines, and robots. Leveraging this data through advanced analytics and machine 

learning techniques empowers manufacturers to gain valuable insights into their 

production processes. Real-time monitoring, predictive analytics, and anomaly detection 

enable proactive maintenance, reducing downtime and optimizing equipment utilization. 

Moreover, data-driven decision-making enhances process optimization, identifies 

bottlenecks, and facilitates continuous improvement efforts. By harnessing the power of 

data and analytics, manufacturers can achieve higher levels of operational efficiency, 

quality control, and resource optimization. 

The integration of multiagent production architecture with use of motif discovery provides 

manufacturers with a competitive edge in the global market. The ability to rapidly adapt to 

changing customer demands, introduce new product variations, and deliver personalized 

solutions gives manufacturers a unique selling proposition. Flexible production systems 

enable cost-effective small-batch manufacturing, reducing inventory costs and enabling 

just-in-time production. Moreover, by leveraging the platform, manufacturers can push the 

boundaries of innovation, explore new manufacturing techniques, and introduce cutting-

edge products to the market. 
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5.3. Advantages of the BRAINE platform 

There are multiple existing solutions. One of those are cloud platforms such as Azure, 

AWS or GCP. The cloud platforms brings multiple advantages such as easy scalability, 

efficient data management, and remote accessibility. They optimize operations, enable 

real-time analytics, promote collaboration, and ensure data protection, driving innovation 

in the industrial environment. Unfortunately, a lot of times data protection offered by cloud 

platforms is not enough for manipulating sensitive production data.  

Because of the sensitivity of the data the data have to be anonymized to be able to leave 

shopfloor or are prohibited to leave shopfloor at all. 

In this case only solution is custom on-demand solution that is hard to deploy and maintain, 

or edge platform (for example Siemens EDGE) which are in most cases not powerful 

enough and provide only small portion of services provided by cloud platforms. 

This is where BRAINE platform can fill the gap. BRAINE provides a comprehensive suite 

of deployment, monitoring, and AI capabilities inspired by cloud platforms but modified for 

use on the edge. At the same time offering desired power such as server CPUs, GPUs, 

and so on. 

5.4. Business solutions and economic advantages of BRAINE for 

robotics & manufacturing 

In summary, the BRAINE platform's integrated advanced capabilities, customization 

options, real-time data processing, seamless integration, and advanced predictive 

analytics. Its unique features cater specifically to the challenges and requirements of the 

manufacturing industry, enabling manufacturers to achieve higher levels of efficiency, 

adaptability, and competitiveness. 

In this use case, it has been validated experimentally that the BRAINE platform can 

perform computationally demanding tasks, which are not feasible for ordinary industrial 

edge device, which are typically equipped with an Intel i5 or i7 CPU, recently and in rare 

cases with a GPU. On the contrary, the BRAINE platform with its performance and 

scalability outperforms such systems. 

This brings significant advantages to robotics and manufacturing as this use case also 

shows. In the scenario of Motiff Discovery as well as in the scenario of the multiagent 

platform, the performance and closely related low latency of the edge server allow 

performing computationally demanding tasks from the fields such as machine learning or 
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AI in real time and closing the feedback from the computation back to the machines. This 

fact enhances the capabilities of the machines significantly. 

 



 

32 

 

6. Conclusion 

The use case demonstrated the BRAINE platform as being suitable for computationally 

demanding tasks, which need to be executed in real time. The solution also showed how 

flexible architecture of the manufacturing execution system can contribute to being able 

organize and command the production in a flexible way too. 


