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1. Executive summary  

UC2 explores the deployment of AI applications in smart city and campus settings, 

focusing on using sensors for video and audio capture to monitor traffic, crowds, and 

emergencies, to mention just a few potential use cases. Traditional cloud-based 

processing methods face challenges such as high data transfer costs and latency issues. 

To overcome these, UC2 leverages the BRAINE Edge Micro Datacenter (EMDC), a 

compact, integrated system designed for local data processing. EMDC reduces the need 

for large-scale data transfer to remote datacenters, thereby minimizing associated costs 

and latency, and supports multi-tenancy to accommodate various services concurrently, 

such as 5G functions and AI analytics. 

The project is driven by the need for efficient local processing in urban environments, 

where handling substantial video and audio data with deep learning algorithms demands 

significant computational resources. EMDC offers a solution by replacing traditional 

servers, thus addressing power, space, and carbon footprint concerns. This innovative 

approach also allows for the consolidation of ICT infrastructure within a city or campus, 

facilitating easier deployment and avoiding logistical challenges. In these settings, both 

real estate and power reources are critical. 

UC2's objective is to leverage the EMDC for multi-tenant audio-video analytics services, 

covering the entire processing pipeline. This initiative includes developing components for 

video/audio analysis, data protection, pre-processing services, and data management 

frameworks, alongside hardware/software acceleration for enhanced computing 

capabilities. The project involves multiple actors, including edge, application, cloud, and 

service providers, as well as service consumers and subjects. 

In summary, UC2 aims to demonstrate a scalable, efficient, and secure Edge as a Service 

platform for distributed video and audio analytics in smart city applications. This approach 

is not only more efficient in terms of infrastructure utilization but also ensures enhanced 

data protection and privacy. With its focus on reducing energy consumption and improving 

processing accuracy and performance, UC2 showcases the benefits the BRAINE EMDC 

can provide in smart city technology, facilitating better traffic analysis, surveillance, and 

emergency response services among others. 

Figure 1.1 shows the high-level overview of the BRAINE components, on top of which 

UC2 is developed and deployed. 
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Figure 1.1 High-level overview of the BRAINE concept 
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2. Use case overview  

UC2 deals with AI applications in the context of a smart city/smart campus scenario. These 

applications include monitoring using different types of sensors for video and audio 

capture, such as road traffic monitoring, crowd monitoring, emergency detection, etc. The 

rest of this section explains the background assumptions and motivations related to this 

use case. 

2.1. Background 

Smart cities and campuses are one of the main edge infrastructures in which AI 

applications are expected to be deployed in large scale. However, since many applications 

involve the processing of many video feeds, it becomes quickly demanding for the local 

ICT infrastructure to deal with the large amount of data that might require timely data 

processing. In fact, data processing requires multiple steps, such as transcoding and 

analysis. While these steps could be applied in a remote cloud datacenter, the cost of 

moving data remotely might be prohibitive, especially when considering the 

heterogeneous environment of a smart city, where the same camera feed might be 

processed by multiple services. That is, a single video feed might need to be delivered 

(replicated) to multiple services, and a service might need multiple video feeds to be 

executed. Furthermore, some applications, such as road traffic analysis, require timely 

response, which might need to be provided also in cases of interrupted remote 

connectivity. Therefore, reliance on a remote datacenter might be not possible for either 

reliability or communication latency constraints. 

Conversely, local processing may address most of these challenges, by avoiding the need 

to send data to a remote datacenter, thereby reducing data transfer volumes and latency. 

For example, transcoding and analysis could happen localy and distribute remotely only 

the results of the analysis. 

2.2. Motivation 

Providing local processing capabiltiies in a city or campus setting is far from trivial. 

Processing large amounts of video/audio data, likely leveraging deep learning algorithms, 

is an expensive workload in terms of computation power. Relying on regular servers for 

this workload might not be possible, and could lead to issues in terms of power 

requirements, real estate space and carbon footprint. 
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In BRAINE, these issues motivate the development of a new system, the Edge Micro 

Datacenter (EMDC), which can replace several servers in a much smaller and integrated 

form factor, which powers advanced software that can leverage the high integration levels 

of the system. 

This enables easier deployment of the EMDC (e.g., on top of building roofs), avoiding any 

complex logistic issue (e.g., power and cooling provisioning). At the same time, the EMDC 

can provide multi-tenancy to support a multitude of infrastructure and third-party services, 

thereby consolidating the overall ICT infrastructure of the city/campus. For example, the 

EMDC can support 5G virtual network functions, while running in parallel the transcoding 

and AI analytics services mentioned earlier. 

The multi-tenancy gives at the same time opportunities for further optimizations. For 

example, services requiring to operate on the same video stream might directly share the 

pre-processing of such stream within the context of the same EMDC. Likewise, services 

can be composed to leverage their outputs to deliver more complex features. 

Finally, the EMDC provides a vantage point to enforce data protection and privacy. For 

example, video streams can be processed close to the source to remove relevant personal 

identifiable information (e.g., faces from a video), before sending the data to a third-party 

service or to any remote location. 

2.3. Objective 

The goal of UC2 is to leverage the EMDC platform to provide a multi-tenant service 

platform for audio-video analytics, supporting all the steps of the processing pipeline. To 

achieve this objective, the UC2 develops test scenarios and validates them. This includes 

the development of the following components: 

• Video/Audio analysis applications 

• Data protection filters/services 

• Video/audio pre-processing services 

• Video/audio acquisition services 

• Data management framework (for data distribution among services) 

• Hardware/software acceleration for compute services (e.g., AI) 

Currently, there is no shared, efficient and secure Edge as a service platform, where 

multiple data collectors and service providers could run their application. Overall, Use 

Case 2 addresses the case of smart city applications that perform distributed video and 

audio analytics. Instead of single service provides with own infrastructures, UC2 
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demonstrates a scalable, heterogeneous and multi-tenant service infrastructure for traffic 

analysis, surveillance, smart transportation, emergency response. 

In this sense, the Use Case 2 assumes the presence of the following actors involved in 

the proposed scenarios: 

• Edge provider: edge node owner, manages the edge node 

• Application provider: provides the software that implements the use case, may be 

a “tenant” on the edge node 

• Cloud provider: provides the remote infrastructure, if any 

• Service provider: provides the end-to-end service to implement the use case, 

combining the services from application, edge and cloud providers 

• Service consumer: buys the service from the service provider, and uses it 

• Service subjects: stakeholders passively involved in the service, e.g., people 

appearing in the monitored videos 

2.4. Goals (KPI’s) 

We define the KPIs for this use case considering both application-specific and general 

performance metrics, as listed next: 

- Efficiency: this criteria refers to the energy consumption of the edge node when 

running end-to-end processing pipelines. The objective is to improve the 

processing while reducing the energy consumption by 20% with respect to a state-

of-the-art datacenter infrastructure, considering an equivalent computing power to 

run the service. 

- Accuracy: algorithm performance in vehicles and pedestrians flow identification 

(Accuracy = true positive tests/ total tests). At least 85% of accuracy is our 

objective 

- Performance: UC2 aims at demonstrating faster AI/ML Computing functions than 

state of the art Deep Learning execution engines (measured in terms of execution 

time). Moreover, we target for GPU-assisted video transcoding at least a 5x 

performance improvement compared to a CPU-only solution. 
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3. Implementation and Integration 

Use case 2 implements a live stream analytics pipeline composed of a few high-level 

blocks, as depicted in Figure 3.1. 

 

Figure 3.1: High-level computation pipeline for UC2 

The pipeline is designed to work on live captured traffic, although it might eventually 

include storage components at different levels. For instance, one of the analytics services 

could provide saving of results in a database.  

The different processing blocks have heterogeneous requirements in terms of hardware, 

with the Pre-processor and Analytics Service being the most demanding components. In 

particular, the pre-processor is generally in charge of video/audio transcoding and 

transformation. This is a generally expensive computation, which can benefit from widely 

parallel processor architectures, such as GPUs. Likewise, the Analytics components can 

employ Deep Learning algorithms, which in turn benefit from GPUs and other 

accelerators. 

The overall pipeline works therefore as follows: data stream collectors are connected to 

the data stream sources, e.g., cameras, and work as an adaptation layer. This mostly I/O 

workload has to do with protocol conversion and with the handling of connectivity issues. 

The standard streams generated by the stream collector are then provided to the pre-

processor. As mentioned, this component performs transcoding, but also adaptation of 

video rate and quality. In fact, the pre-processor offers an external interface that can be 

leveraged by the platform orchestrator to adapt the video quality according to the 

contextual resources’ constraints. The Data Fusion element that follows is a sort of “data-

hub and policy enforcement point”. It provides routing of the raw data streams to the 

analytics service. This requires potential duplication of the streams, but also chaining of 

the stream through multiple functions, before finally delivering it to the specific analytics 

component. For instance, we show a case in which we perform face blurring on a video 

stream before providing the video to an analytics service, to provide privacy protection. 
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The last component, the analytics services, finally receive the modified stream and 

implement the custom analysis required by the specific application use case. 

The implementation of Use Case 2 must consider the requirements of building a solution 

that supports the multi-tenancy concept, when running AI functions designed for video 

analytics. This allows multiple, independent AI video analytics services to be 

simultaneously operated by different tenants on the same data set (e.g., the same video 

stream). 

The functional structure of the fully integrated solution is depicted in Figure 3.2, while 

Figure 3.3 shows the basic concept of the Application Platform, implemented to fulfill the 

multi-tenancy requirements of UC2. 

 

 

 Figure 3.2: Functional structure of the integrated solution 
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Figure 3.3: Application Platform usage scenario 

 

3.1. Use case implementation 

Use case 2 includes several components: 

• Transcoding – VTU 

• Face Blurring – Pedestrian Face Blurring 

• Analytics Services: 

o Video Object Detection 

o AI Audio Analysis  

• Application Platform - i.MTX. 

• AI SOL optimization. 

A brief description of the components will be provided in the following sections. 

3.1.1. VTU 

The VTU acts as data stream collector and pre-processor in the data processing pipeline 

of Use Case 2. It can convert audio and video streams from one format to another. The 

source stream can originate from a file within the local storage system, or maybe a 

packetized network stream. The requested transcoding service can be monodirectional, 

as in video streaming, or bi-directional, like in videoconferencing. The transcoding 

capabilities of the VTU are provided by Libav (https://github.com/libav/libav). Libav is an 

https://github.com/libav/libav)
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open-source library, which can handle a wide variety of audio and video coding standards. 

For the most computationally intensive video encoding tasks, the VTU relies on Graphical 

Processing Unit (GPU) resources. 

The main features of VTU are the following: 

• Real-time video streaming management from different sources 

• Video processing: transcoding, transrating, transizing 

• Capability to share video among sources/users/applications 

• Protocol support: rtmp, rtsp, http, hls, rtp, websocket. 

3.1.2. Pedestrian Face Blurring 

Face blurring represents the first element of the video processing chain that has been 

deployed in the BRAINE EMDC and dedicated to UC2. It is an important technique used 

to protect individuals' privacy in images or videos. For BRAINE purposes, TensorFlow, an 

open-source deep learning framework, has been identified as the AI platform for 

implementing face blurring algorithms thanks to its ease of use and an extensive library of 

tools. 

The TensorFlow algorithm for face blurring involves the following steps: 

• Face Detection: The first step is to accurately detect faces in the input images or 

video frames. A Faster R-CNN model is utilized to locate faces within the given 

input. 

• Face Region Extraction: Once the faces are detected, the algorithm extracts the 

region of interest (ROI) containing the face. This step ensures that only the 

identified faces undergo the blurring process, while the rest of the image remains 

unchanged. 

• Blurring Technique: this step involves the use of another framework: OpenCV. The 

blurring method in OpenCV is used to blur an image using the normalized box 

filter. The function smooths an image using the kernel which is represented as: 

  

• Generation of RTSP blurred stream: after the algorithm is developed and 

implemented, the blurred stream feeds the Video Object detection algorithm to 

protect the user privacy. 
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3.1.3. Video Object Detection  

Video object detection is a part of the pipeline processing chain implemented in BRAINE 

for UC2. To meet the accuracy and reliability requirements defined for the smart city use 

case, DeepSORT algorithm has been selected as the best candidate. Such algorithm is a 

deep learning-based object detection network with a Kalman filter-based tracking 

framework. The algorithm starts by detecting objects in a video stream using a deep 

learning-based object detection network (i.e., YOLOv4). The object detection network 

produces a set of bounding boxes and corresponding object detection scores for each 

object in each frame of the video stream. The bounding boxes and detection scores are 

then passed to the tracking module, which uses a Kalman filter to estimate the position, 

velocity, and acceleration of each object over time. The Kalman filter uses the detection 

scores to update the state of the filter and predict the future state of the object in 

subsequent frames. 

3.1.4. AI Audio Analysis   

AI Audio Analysis is based on the Agile Focused Signal Analytics platform by MarshallAI. 

The software provides the user the possibility to define and configure an AI Application for 

processing an audio stream or recording and automatically take action based on inferred 

results. The AI Application uses a pre-trained AI Model to analyse the received audio 

stream. All stages of the analaysis pipeline, including AI Model training and data collection 

/ annotation can be performed on the same platform running on the EMDC - enabling full 

control of the analysis process for each specific use case. 

A common audio analysis AI-Program running on the AFSA consists of the following 

stages: 

• Audio source (e.g. audio over RTSP) 

• Audio feature extraction (e.g. FFT, Frequency binning, averaging) 

• ML Classifier model (e.g. Convolutional Neural Networks) 

• Logical decision tree (e.g. Thresholding, Mapping, If/Else) 

• Output action (e.g. HTTP POST / REST, TCP, MQQT, SMS) 
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The program flow can be extended as needed to gain higher accuracy results in complex 

cases by chaining multiple AI Models to perform multiple stages of inference and filtering. 

Audio feature creation on the AFSA platform can be performed using a variety of different 

options. The baseline features consist of a defined number of frequency bins depicted as 

vertical columns in a feature image where the intensity value of each bin represents a 

black to white color value given as an unsigned 8bit integer (0-255). As audio is read 

forward the vertical bars representing frequency intensities present in the incoming audio 

stream are stacked horizontally forming a sliding feature from left to right giving a sense 

of time being represented on the horizontal axis. The single values for each frequency bin 

are then mapped to an RGB color spectrum to better highlight minor details and changes 

in audio to the application developer when looking at the generated feature images 

through a computer monitor during annotation / labeling. For specific use cases it might 

be required to have a higher dynamic range present to distinquish smaller differencies 

between samples. For these scenarios the AFSA platform has built in digital filters to 

perform bandpass filtering, resampling and quantization of the incoming raw audio signal. 

Features generated by the feature creation / extraction stage can then be used to train an 

artificial neural network to perform inference on multiple audio streams simultaneously. 

Computation of the neural network’s backward and forward passes utilize CUDA and 

Tensor -core hardware acceleration by default. 

3.1.5. i.MTX 

i.MTX enables the slicing and multi-tenant concepts at the application and data level 

among different tenants. i.MTX is developed as a Kubernetes Pod, in particular, one 

instance can manage one data processing pipeline. 
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A data processing pipeline that needs to be managed by a single i-MTX instance can be 

described and configured using the i.MTX builder, a web-based dashboard. The output of 

the builder is a configuration file to be used to configure the parameters of the application 

platform and a “yaml” file to be used for deploying the application Pod using Kubernetes. 

A possible implementation of data pipelines using the i.MTX is depicted in Figure 3.4. Data 

pipeline 1 is sent to two different tenants' subsystems assuring privacy and domain 

separation. 

 

 

Figure 3.4: Data pipeline implementation using i.MTX 

3.1.6. AI SOL Optimization 

SOL is a deep learning compiler and runtime system, as such, it becomes part of the 

application stack, although being transparent to the developers. Developers use regular 

open source frameworks, such as Pytorch, to develop their applications. SOL is integrated 

in such applications as an additional software library, which then optimizes the software 

execution during the first cold-start of the application on the deployed system. Potentially, 

this step could also be preemtively run to ensure fast boot at any time. 

Under the hood, SOL reads the input program and infers the sequence of operations 

applied to the program’s input. For instance, SOL reconstructs the sequence of 

mathematical operations that finally implement a neural network algorithm. Since these 

operations are described at the logical level by domain experts, there is often a large 

space to reconsider them in their entirety to introduce optimizations. For example, it is 
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possible to remove operations that finally are redundant or repeated, or some operators 

can be “merged” to reduce memory copy (something generally referred to as “operator 

fusion”). SOL applies these and other optimizations on top of an itermediate 

representations that allows easy manipulation of the operators. Then, the resulting 

representation is compiled into a new version of the source code that gets automatically 

integrated in the orginal program and transparently called within in. The SOL runtime 

ensures that memory copy and handling is also transparently integrated. 

The final result is that deep learning programs are optimized and run in a fraction of the 

original time, with speed-ups in the range 30% to over 3 times faster. 

3.2. Integration with the BRAINE platform 

All the SW components developer for implementing the UC2 demo are available as 

Docker container images and can be deployed over the EMDC Kubernetes cluster using 

the BRAINE platform. Figure 3.5 shows the data pipeline used for the demo.  

 

 

Figure 3.5: Data pipeline for use case 2 demo 

 

The i.MTX builder filled in to implement the data pipeline is reported in Figure 3.6. Figure 3.7 shows 

the output configuration file and, finally Figure 3.8 shows the “yaml” file related to the i.MTX. 
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Figure 3.6: Data pipeline configuration using the builder 
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Figure 3.7: Data pipeline configuration file 
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Figure 3.8: i.MTX yaml file 
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4. Results 

Show results for relevant KPI’s here 

4.1. Video Transcoding Engine 

A performance evaluation was carried out on the testbed hosted at CNIT premises using 

the BRAINE platform. Figure 4.1 shows the test scenario: a recorded video, locally stored, 

is transcoded using first the x86 CPU and then a NVIDIA GPU hosted on the PCIe bus. In 

particular, the output parameter used for the transcoding task are: 

• Codec: H.264:  

o SW, using CPU - codec libx264  

o HW, using GPU – codec h264_nvenc 

• Bitrate: 5Mb/s 

• Video Size: full HD 

• Frame size: 24 

 

 

 

Figure 4.1: Performance evaluation scenario. 
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Figure 4.2: Results on dashboard 

 

HW used 
Frame per second 

(max) 
Speed 

CPU  54 2.24x 

GPU 280 11.6x 

Table 4.6.1: CPU vs. GPU transcoding performance 

As reported in Figure 4.2 and summarized in Table 4.6.1, using a GPU allows for a 5.2x 

increase in transcoding performance, in alignment with our target KPI. 

4.2. Video Object Detection 

In the following, measured KPIs are listed with corresponding results for Video Object 

Detection algorithm: 

• Accuracy: this is a crucial KPI for object tracking in smart cities as it measures how 

well the algorithm can detect and track objects. The BRAINE Video Object 

Detection algorithm achieved an accuracy of 95.6% for pedestrian tracking in a 

smart city environment. 

• Processing Time: processing time is an important KPI for real-time applications 

related to smart cities scenarios. The BRAINE Video Object Detection algorithm 

achieved a processing time of 10 frames per second (fps) on a standard CPU, and 

25 FPS with GPU support (NVIDIA Tesla T4), which is suitable for real-time 

applications. 

• Robustness: robustness is an important KPI as it measures how well the algorithm 

can handle challenging scenarios such as occlusions and cluttered scenes. 

BRAINE Video Object Detection algorithm achieved a robustness score of 94.2% 

for pedestrian tracking in lab environment. 

• False Positive Rate: the false positive rate measures the number of false 

detections made by the algorithm. In BRAINE, a false positive rate of 3.5% for 

pedestrian tracking in UC2 has been achieved.   

4.3. Pedestrian face blurring 

In the following, measured KPIs are listed with corresponding results for pedestrian face 

blurring algorithm: 
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• Face Detection Accuracy: Face detection accuracy measures how well the AI 

algorithm can accurately detect faces in the input images or video frames. A high 

face detection accuracy is essential for ensuring that the blurring process covers 

all identifiable faces. The measured face detection accuracy for UC2 is around 

95%, indicating that the algorithm can reliably identify and locate faces. 

• Blurring Efficiency: Blurring efficiency measures the speed and computational 

efficiency of the face blurring algorithm. It is crucial for real-time or near-real-time 

processing of video streams in smart cities. The blurring algorithm is able to 

process frames at more than 25 frames per second (fps) without considering the 

GPU. 

• False Positive Rate: False positive rate measures the occurrence of false blurring, 

where non-face regions are erroneously blurred. A low false positive rate indicates 

that the algorithm accurately identifies and blurs only the faces without affecting 

other parts of the image. The measured false positive rate should is below 5%, 

ensuring minimal unnecessary blurring and preserving the contextual information 

of the scene. 

4.4. AI Audio Analysis 

The MarshallAI AFSA running on the BRAINE platform enables the usage of multi-stage 

chained deep learning algorithms. This enables to pre-filter interesting events in real time 

with low compute requirements and makes it possible to forward data to higher compute 

availability once a certain threshold for interesting data is exceeded. Using this multi-stage 

detection, tracking and classification setup the AFSA can achieve accuracies reaching 

99% in lab environments within hours of semi-unsupervised fine-tuning methods. 

The modular architecture of the EMDC allows for splitting up processing chains on the 

AFSA to have payloads forwarded over the network for further processing. 

Robustness for all solutions is achieved through environment specific fine-tuning and can 

be done using the "autotune" mechanism bundled into all AFSA -based solutions. The 

"autotune" algorithm incorporates mechanisms to internally determine a networks 

accuracy in live -scenarios and automatic sample collection for quickly fine tuning deep 

neural networks. 

4.5. AI SOL Optimization 

Deep learning computations are arguably one of the main sources of overhead in the 

audio/video analysis pipeline. One of the problems of these computations is that the 
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definition of a deep learning network archtiectures happens at the conceptual level dealt 

with by a data scientist. This enables quick iteration and fast development of new 

funcitons, but introduces several sources of efficiencies. In fact, the layers of a neural 

network are executed as independent atomic elements of computation, introducing 

synthetic synchronization boundaries in the computation graph, which lead to unecessary 

data movements within processors and across processors and memory. To address the 

problem in BRAINE we extended a compiler system, SOL, which is capable of 

understanding the intent of a deep learning computation, and synthetize a new program 

that specializes for the execution of such neural network, thereby removing most of the 

sources of overhead. To demonstrate the capability of such system, we compare to the 

performance of state-of-the-art frameworks (PyTorch) when running a state-of-the-art and 

highly optimized neural network architecture (ResNet), in a typical inference setting (with 

small batch size=1). 

Neural Network execution method Time (ms) 

PyTorch 2.0 Eager            79.11827 

PyTorch 2.0 torch.jit.trace 105.45527 

PyTorch 2.0 torch.compile 56.92193 

SOL sol.optimize   31.41416 

The results show that SOL optimization is capable of providing a 2.5x faster execution 

over PyTorch out of the box, when running on an Intel CPU. This is a shift in performance 

from 12 frames per second to over 30 frames per second on CPU! 

Compared to the latest compile feature of PyTorch introduced experimentally in the latest 

PyTorch version, SOL is still faster by 1.8x. This overachieves our objective of improving 

by at least 20% the performance of complex data analysis applications. 
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5. Impact 

Discuss the use case results in comparison to the state of the art, and also discuss the 

potential economic impact of the use case and overall BRAINE platform here. 

5.1. Comparison to existing systems 

BRAINE architecture has been designed to be scalable and dinamic to support several 

applications in the Smart Cities environment. One notable improvement compared with 

state-of-the-art system is the integration of multiple AI video processing algorithms to 

process the data in real-time manner and close to the end-user. One of this algorithm 

ensures that individuals captured in video footage remain anonymous and their privacy is 

protected. By automatically detecting and blurring faces in real time, we adhere to ethical 

considerations and address concerns surrounding the identification and misuse of 

personal data. This improvement promotes a safer and more privacy-conscious 

environment within smart cities. In addition to face blurring, the system now incorporates 

advanced people detection capabilities. Using video processing algorithms, we can 

accurately identify and track individuals within the captured footage. This feature enables 

various applications, such as crowd management, traffic monitoring, and public safety. 

With real-time people detection, authorities can promptly respond to potential security 

threats, mitigate congestion, and optimize resource allocation in a dynamic and efficient 

manner. 

Regarding the edge computing and virtualization technologies, we have decentralized 

video processing tasks, bringing several advantages. Firstly, video analysis is performed 

at the edge of the network, closer to the source of the data. This localization minimizes 

latency and reduces the load on the central server, resulting in faster and more efficient 

processing. Moreover, the system benefits from the scalability and flexibility offered by 

virtualization platform. It dynamically allocates computing resources based on demand, 

ensuring optimal performance during peak periods and minimizing resource wastage 

during off-peak times. Furthermore, the integration of edge computing with the system 

enhances its compatibility with existing smart city infrastructure. By leveraging the 

distributed nature of edge computing, the system seamlessly integrates with surveillance 

cameras and other network components. This integration minimizes the need for 

significant modifications to the infrastructure, making it easier to deploy and scale the 

system across multiple locations within the smart city. 
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5.2. Advantages of the BRAINE platform 

The BRAINE platform provides an easily scalable hardware architecture to be used on the 

edge. The possibility to quickly configure the platform to be suited for the desired compute 

needs (GPU vs CPU vs FPGA) is a big advantage in comparison to alternative platforms. 

The multi-tenancy support for deploying multiple different applications by various 

providers in a secure way onto a uniform hardware stack ensures superior scalability and 

maximises the utilisation of the compute resources. 

The passive cooling and robust design of the hardware supports both indoor and outdoor 

deployments. The low latency data transfer from sensors to the nearby EMDC for data 

processing enables low latency inference at scale on the edge. Utilisation of standardised 

containerisation (Docker & Kubernetes) ensures low modification requirements for adding 

existing software on to the BRAINE-platform. 

5.3. Business solutions and economic advantages of BRAINE for Telco 

operators and municipalities 

5.3.1. BRAINE for Smart Cities 

Smart Cities are complex technological ecosystems composed by several diverse 

technologies and interconnected devices. Manage the huge amount of data generated by 

the smart city is a technological challenge where edge computing is part of an enabling 

framework for efficient data processing and Artificial Intelligence contributes by providing 

the ability to extract meaningful information from the smart city data. 

BRAINE is based on the heterogeneous Edge Micro Data Center (EMDC) optimized in 

terms of computing capacity and energy efficiency, and on a software system that 

integrates Artificial Intelligence technologies, able to process Big Data at the edge of the 

network, guaranteeing its security, privacy and sovereignty. Furthermore, BRAINE is 

based on technologies that optimize the use of available resources, providing new 

methodologies for allocation of workloads at the edges of the network that take into 

account different parameters including optimization of data management and processing 

to ensure, where necessary, low latency applications and real-time management in the 

case of mission-critical applications. 

Use case 2 highlights how BRAINE can guarantee the realization of services in the large-

scale Smart City area, even in case of low-latency applications and with stringent 

requirements in terms of bandwidth, which also need to manage large quantities of input 
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data in real-time. The solution creates services using distributed audio and video analysis 

techniques, based on a scalable, heterogeneous and multi-tenant infrastructure. The 

application scenarios cover traffic analysis, active surveillance, intelligent transport and 

emergency response. 

Use case 2 demonstrates how the use of cameras, distributed throughout the city, can 

allow the creation of different types of services of interest to Smart City. In fact, cameras 

become one of the most versatile sensors if supported by artificial intelligence techniques 

as they allow the extrapolation of different types of information from the analysis of audio 

and video flows. In this context, the use of BRAINE Platform enables the ability to process 

large volumes of audio and video flows to obtain a large amount of heterogeneous 

information that can be used for the implementation of different services such as: Traffic 

management, logistics planning, urban space planning, assessment of pollution levels, 

active management of security and emergency response issues, crowd management and 

maintenance of city infrastructure. 

5.3.2. BRAINE for Telco 

The implementation of Use Case 2 (UC2) with the Edge Micro Datacenter (EMDC) 

platform offers several significant advantages for the telecommunications sector, 

particularly in connection with 5G deployments and other applications: 

Enhanced 5G Network Capabilities: The integration of EMDC in smart city and campus 

environments is highly synergistic with the deployment of 5G networks. 5G technology, 

known for its high speed and low latency, benefits immensely from local data processing. 

EMDC can facilitate faster processing and analysis of data generated by 5G-enabled 

devices and applications, leading to more efficient network performance and enhanced 

user experiences. 

Reduced Latency: For telecommunications companies, latency is a critical factor, 

especially for applications requiring real-time processing such as augmented reality (AR), 

virtual reality (VR), and autonomous vehicle navigation. By processing data locally with 

EMDC, the latency caused by data transfer to and from remote cloud servers is 

significantly reduced, making these real-time applications more viable and effective. 

Cost-Effective Data Management: With EMDC's local processing capabilities, telecom 

operators can manage data more cost-effectively. By reducing the need to transfer large 

volumes of data to remote servers, companies can save on data transmission costs. This 
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is particularly relevant in the context of 5G, where the volume of data generated by end-

users is expected to be substantially higher than previous generations. 

Improved Data Security and Privacy: Data security and privacy are paramount concerns 

in the telecommunications sector. EMDC's ability to process data locally means sensitive 

information, like personal user data, does not have to be transmitted over long distances, 

reducing the risk of data breaches. This is crucial for maintaining user trust and complying 

with data protection regulations. 

Energy Efficiency and Sustainability: EMDC's focus on reducing energy consumption 

aligns with the growing need for sustainability in the telecom sector. By optimizing 

processing power and reducing the carbon footprint associated with large data centers, 

telecom companies can achieve more sustainable operations, which is increasingly 

becoming a competitive advantage. 

  

Scalability and Flexibility for Diverse Applications: The multi-tenant nature of EMDC allows 

telecom operators to support a wide range of services and applications on the same 

infrastructure. This flexibility is essential for 5G networks, which are expected to support 

diverse applications, from IoT (Internet of Things) devices to high-definition video 

streaming. 

Edge Computing Integration: The rise of edge computing, where data processing happens 

closer to the data source, is a natural fit for 5G networks. EMDC's local processing 

capabilities are in line with the edge computing paradigm, enabling telecom companies to 

leverage this technology more effectively. 

Innovative Service Offerings: With EMDC, telecom operators can develop and offer new, 

innovative services that require high-speed data processing and low latency, such as 

smart city services, traffic management solutions, and emergency response systems. This 

can lead to new revenue streams and enhanced service portfolios. 

In summary, the integration of UC2 with EMDC in the telecommunications sector, 

especially in the context of 5G deployments, offers substantial benefits including 

enhanced network performance, reduced latency, cost-effective data management, 

improved security and privacy, energy efficiency, scalability, and the potential for 

innovative service offerings. These advantages position telecom companies to better meet 

the demands of modern digital services and infrastructure needs. 
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6. Conclusion 

We presented the implementation of smart city/campus use case using tthe BRAINE 

platform and its technological components. BRAINE enables the deployment of micro 

datacenters that support complex multi-modal analysis pipelines, including several 

sources of data (microphones and cameras), multiple analysis elements and algorithms, 

and infrastructural components to support connectivity and secure data handling. The 

showcased application features a multi-tenant setting with privacy preserving filters 

applied before the video analysis pipeline, and the results of the video analysis combined 

with a paralell audio analysis pipeline. The combination of these elements is made 

possible by the joint work of the BRAINE platform that provides resources to the 

application components and the use case implementation platoform that orchestrates the 

data flow among them. Together with both hardware and software acceleration 

enhancements, the overall concept described here provides a promising starting point to 

impact the Smart City and Telecom operators markets, where edge deployments and the 

supported applications already play an important role for security and 5G connectivity use 

cases. 


