

BRAINE - Big data Processing and Artificial Intelligence at the
Network Edge

Project Title: BRAINE - Big data Processing and Artificial
Intelligence at the Network Edge

Contract No: 876967 – BRAINE

Instrument: ECSEL Research and Innovation Action

Call: H2020-ECSEL-2019-2-RIA

Start of project: 1 May 2020

Duration: 36 months

Deliverable No: D4.4

Final project report on the status of WP4
Part 2

Due date of deliverable: 30 N2022

Actual submission date: 17 April 2023

Version: 1.0

Project funded by the European Community under the
H2020 Programme for Research and Innovation.

2

Project ref. number 876967

Project title
BRAINE - Big data Processing and Artificial Intelligence at
the Network Edge

Deliverable title Final project report on the status of WP4-Part1

Deliverable number D4.4

Deliverable version Version 1.0

Previous version(s) -

Contractual date of
delivery

28 Feb 2023

Actual date of delivery 17 April 2023

Deliverable filename Final project report on the status of WP4-Part2

Nature of deliverable Report

Dissemination level PU

Number of pages 45

Work package WP4

Task(s) T4.1, T4.2, T4.3, T4.4

Partner responsible DELL

Author(s) Javad Chamanara (LUH), Ahmed Khalid (DELL), Sean
Ahearne (DELL), Adam Flizikowski (ISW), Md Munjure
Mowla (ISW), Vojtěch Janů (CTU), Hemant Mehta (UCC),
Martin Ron (FS), Roberto Bifulco (NEC), Amihay Tabul
(MLNX), Ilya Vershkov (MLNX), J.J. Vegas Olmos (MLNX),
Philippe Nguyen (SIC)

Editor Javad Chamanara (LUH)

Abstract Report on the set of BRAINE platform components
developed in WP4 for data management, 5G vRAN, factory
motif discovery, and AI profiling.

Keywords WP4, Data management, 5G, Industry 4.0, AI

3

Copyright

© Copyright 2022 BRAINE Consortium

This document may not be copied, reproduced, or modified in whole or in part for any
purpose without written permission from the BRAINE Consortium. In addition to such
written permission to copy, reproduce, or modify this document in whole or part, an
acknowledgement of the authors of the document and all applicable portions of the
copyright notice must be clearly referenced.

All rights reserved.

Deliverable history

Version Date Reason Revised by

00 01.10.2022 Document Outline Javad Chamanara

01 06.02.2023
List of Components and
contributions

Javad Chamanara

1.0 17.04.2023 Final
Javad Chamanara,
Filippo Cugini

4

List of abbreviations and Acronyms

Abbreviation Meaning

5G 5th Generation

AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

CU Centralized Unit

DU Distributed Unit

EMDC Edge Mobile Data Center

EPC Evolved Packet Core

EU European Union

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

IoT Internet of Things

IT Information Technology

KPI Key Performance Indicator

MES Manufacturing Execution Systems

MOD MOtif Discovery

RAN Radio Access Network

UE User Equipment

USRP Universal Software Radio Peripheral

DoA Description of Action

K8S Kubernetes

DB Database

DLCM Data LifeCycle Manager

JSON JavaScript Object Notation

GUI Graphical User Interface

REST Representational State Transfer

VNF Virtual Network Function

MQTT Message Queuing Telemetry Transport

5

Table of Contents

1. Executive summary ... 8

2. Introduction .. 9

3. Status of the components .. 11

3.1. Global File System (C4.3) ... 11

3.1.1. Technical description ... 11

3.1.1.1. TDE in Apache Ozone .. 12

3.1.1.2. Attribute Based Encryption .. 13

3.1.1.3. Encryption with the proposed data placement policy 13

3.2. Active Data Product (C4.4) .. 16

3.2.1. Technical description ... 16

3.2.2. Advancements ... 17

3.2.3. Performance Evaluations and comparisons ... 18

3.3. Catalyzr Tool (C4.5) .. 19

3.3.1. Technical description ... 20

3.3.2. State of the Art (SOTA) .. 22

3.3.3. Advancements ... 22

3.3.4. Performance Evaluations and comparisons ... 22

3.4. Authoring tool (C4.6) ... 23

3.4.1. Technical description ... 23

3.4.2. State of the Art (SOTA) .. 26

3.4.3. Advancements ... 27

3.4.4. Performance Evaluations and comparisons ... 28

3.5. Service Orchestrator (C4.7) .. 29

3.5.1. Technical description ... 29

3.6. Monitoring Dashboard (C4.8) .. 30

3.6.1. Technical description ... 30

3.6.2. Advancements ... 30

3.7. Healthcare Assisted Living (C4.10) ... 30

3.7.1. Technical description ... 31

3.7.2. State of the Art (SOTA) .. 32

3.7.3. Advancements ... 32

3.7.4. Performance Evaluations and comparisons ... 32

3.8. Network Telemetry Framework (C4.14) ... 32

3.8.1. Technical description ... 33

3.8.2. State of the Art (SOTA) .. 36

3.8.3. Advancements ... 36

6

3.8.4. Performance Evaluations and comparisons ... 38

4. Conclusion... 40

5. References .. 41

7

List of Figures

Figure 2.1 BRAINE Architecture Diagram showing components developed in D4.3 10
Figure 3.1 Example Scenario (TDE, ABE) ... 12
Figure 3.2 Ozone Performance (with encryption and without encryption) 13
Figure 3.3 TDE in Apache Ozone .. 15
Figure 3.4 ABE in Apache Ozone .. 15
Figure 3.5 Interaction model of the ADP and a user (agent) .. 17
Figure 3.6 ADP connection to the IOTA network ... 18
Figure 3.7 Internal workflow of the Catalyzr tool .. 21
Figure 3.8 Catalyzr architecture .. 21
Figure 3.9 Argo Overview .. 24
Figure 3.10 Excerpt of BRAINE vocabulary lift highlighting Workflow 25
Figure 3.11 Excerpt of BRAINE vocabulary highlighting Workflow and Service Profile .. 25
Figure 3.12 Workflow Specification Interface. .. 26
Figure 3.13 Workflow Registry Specification interface. .. 26
Figure 3.14 Old Architecture. ... 28
Figure 3.15 New Architecture. ... 28
Figure 3.16 Network telemetry monitoring system ... 34
Figure 3.17 P4 source code to define the flow telemetry table 35
Figure 3.18 gRPC proto3 example used in the telemetry monitor & exporter 36
Figure 3.19 WP3.4 Main EMDC components and closed-loop telemetry workload. 37
Figure 3.20 Grafana view for flow base telemetry .. 38
Figure 3.21 Grafana view for discarded packet ... 39
Figure 3.22 Grafana view for BGP protocol stat .. 39

8

1. Executive summary

Work Package 4 delivers 15 software components that not only interact with each other

to build part of the EMDC platform, but also, they are utilized by the use-cases. This

deliverable is the technical report that communicates the final outcome the first part 2 of

the WP4 components. In D4.3 seven components were present. In this deliverable the

remaining 8 components including their technical details, state-of-the-art as well as

advancements are presented. Some of the components may have been reported in D4.3

and appear here too. This is because the partners have either made changes or

improvements or provided more technical details in D4.4.

9

2. Introduction
WP4 has produced 14 components, which their specification, features, and performance
is to be reported in two deliverables, D4.3 presented seven of the components (see table
below) and this document, D4.4, explains the rest. Based on the DoA's requirements, D4.4
includes the following sections and results, which cover 8 of the components, belonging
to the following categories:

• Workflow definition language and authoring tool: This deliverable section
provides a working ontology, suitable to describe data workflows as well as an
authoring tool to visually create these workflows.

• Flow-based telemetry with ML-based network analyzers: This deliverable
section is a software system providing a framework for telemetry collection of
specific network infrastructure metrics, effectively streaming selected
measurements to ML-powered network analyzers.

To clarify the components’ distribution among the two deliverables, table below indicates
partners responsible for each of the components and the deliverable (D4.3 or D4.4) each
component will be reported in.

Partner Components Deliverable

ISW vRAN with adjustments (C4.12) D4.3

FS Motif Discovery Tool (C4.11) D4.3

UCC Data Placement (C4.9) D4.3

DELL Data lifecycle manager (C4.1)

Policy manager (C4.2)

Global File System (C4.3)

D4.3

D4.3

D4.3

NEC AI platform profiling engine (C4.13) D4.3

LUH Active Data Product (C4.4)

Monitoring Dashboard (C4.8)

D4.4

D4.4

SIC Catalyzr tool (C4.5) D4.4

ECC Authoring tool (C4.6)

Service Orchestrator (C4.7)

D4.4

D4.4

IMC Healthcare Assisted Living (C4.10) D4.4

MLNX Network Telemetry Framework (C4.14) D4.4

Overall System Architecture
Figure 2.1 illustrates the overall BRAINE’s architecture and locates the WP4 components.
Note that while C4.11 and C4.13 are developed by use case partners, the features
provided are capable of acting as a service which could be consumed by any other use
cases where desired, hence their inclusion in WP4. C4.12 integrates as part of the overall
workload placement framework, influencing workload distribution of vRAN components
based on the overall systems current state.

10

Figure 2.1 BRAINE Architecture Diagram showing components developed in D4.3

11

3. Status of the components

3.1. Global File System (C4.3)

Component
ID

 Component Name Development Owner

C4.3 Global File System 100% DELL

GitLab Repository: https://gitlab.com/braine/dmf
Containerized: Yes
Registered on BRAINE platform image registry: Yes
Deployed as a pod and is functional on BRAINE platform: Yes
Integrated with other platform components: Yes
Status: The development of data storage system based on Apache Ozone is complete
and the sub-components have been deployed as pods and services in the BRAINE
platform. C4.3 is a storage solution that provides a unified filesystem and object store for
applications and workloads running on the platform. It has been integrated with other
system components such as data placement framework and policy manager, as well as
use-case applications that require persistent storage. Further integration activities may
be carried out in WP5, based on use-case requirements.

3.1.1. Technical description

In this period, we studied two encryption techniques and here we are discussing them
along with adopting suitable encryption techniques with the constraint-based data
placement technique (named as CATER) developed in the component C4.3 in a previous
report. The discussion focused on Apache Ozone’s default encryption technique called
Transparent Data Encryption (TDE) and Attribute Based Encryption (ABE).
Transparent Data Encryption (TDE) in Apache Ozone, encrypts the data at rest (i.e., data
on the disk). TDE encrypts the data on disk in way that is transparent to the user, meaning
the user accesses the Ozone data encrypted on disk identical to accessing non-encrypted
data. No knowledge or implementation changes are needed on the client side and the
user sees the data in its unencrypted form. In Apache Ozone we can enable TDE at bucket
level during bucket creation. All files written to the designated encrypted bucket are
encrypted on disk. At present, TDE is the only encryption technique supported by
Ozone.
Attribute-based encryption (ABE) is a type of public-key encryption in which the secret key
of a user and the ciphertext are dependent upon attributes (e.g., the country in which they
live, their group, or the kind of subscription they have) [1]. In such a system, the decryption
of a ciphertext is possible only if the set of attributes of the user key matches the attributes
of the ciphertext.
Example Scenario: Consider the healthcare use-case involving data of several internal
applications like patients’ records, administration data, inventory data and insurance data.
The data should be encrypted so that only authorized user will be able to access them.
To use TDE in such situation we may like to use one key per application so that the only
users from patient management system (doctors, nurses, internal medicine members) can
decrypt the data using application’s key. Similarly, the administration data will be
accessible by admin team, inventory data may be access by the members of inventory
data management and the insurance team can access and use the insurance related
data.
The ABE encrypts/ decrypts the data using user attributes and it also has a data access
policy. For example: if the patient record management application creates the access
policy using the attributes [Doctor ∨ Internal Medicine] and then encrypts the data. Only
users with attributes Doctor or Internal Medicine can decrypt the data.

https://gitlab.com/braine/dmf

12

Figure 3.1 Example Scenario (TDE, ABE)

3.1.1.1. TDE in Apache Ozone

Using Ozone’s Transparent Data Encryption (TDE) the data on the disk can be encrypted-
at-rest and decrypted during access. Ozone supports TDE at Bucket level. We need to
setup a Key Management Server (KMS) and provide its URI to Ozone using a
configuration in hdfs-sites.xml.
Before encrypting a bucket, the client needs to create a bucket encryption key using the
following command
Hadoop key create encKey
After the key creation this key can be used by ozone to create an encrypted bucket by
using following command.
ozone sh bucket create -k encKey /vol/encryptedBucket
Now onwards, all data written to the encryptedBucket will be encrypted via the encKey
and while reading the clients will talk to Key Management Server and read the key and
decrypt it. In other words, the data stored inside Ozone is always encrypted.
While reading the client will talk to key management server to get the key and decrypt the
data. If using Ranger (as KMS) then we can enable the ACLs support in Ozone and set
the ACL authorizer class to Ranger Authorizer.
We perform the analysis of TDE performance by comparing when data is written with
encryption and without encryption. We collected the data while writing files of different size
(100KB, 500KB, 1MB, 10MB, 50MB, 100MB and 1GB).

From the results in Figure 3.2, we observe that the while writing with encryption it takes

17% longer time and uses 30% more CPU as depicted in the following two figures.

13

Figure 3.2 Ozone Performance (with encryption and without encryption)

3.1.1.2. Attribute Based Encryption

ABE is a type of public-key encryption in which the secret key of a user and the ciphertext
are dependent upon attributes (e.g., the country he lives in, or the kind of subscription he
has). In such a system, the decryption of a ciphertext is possible only if the set of attributes
of the user key matches the attributes of the ciphertext. A crucial security feature of
Attribute-Based Encryption is collusion-resistance: An adversary that holds multiple keys
should only be able to access data if at least one individual key grants access.
There are mainly two types of attribute-based encryption schemes: Key-policy attribute-
based encryption (KP-ABE) and ciphertext-policy attribute-based encryption (CP-ABE)
[2], [3], [4].
In ciphertext-policy attribute-based encryption (CP-ABE) a user’s private-key is associated
with a set of attributes and a ciphertext specifies an access policy over a defined universe
of attributes within the system. A user will be able to decrypt a ciphertext, if and only if his
attributes satisfy the policy of the respective ciphertext. Policies may be defined over
attributes using conjunctions, disjunctions and (k,n)-threshold gates, i.e., k out of n
attributes have to be present.
KP-ABE is the dual to CP-ABE in the sense that an access policy is encoded into the
users' secret key, e.g., (A∧C)∨D, and a ciphertext is computed with respect to a set of
attributes, e.g., {A,B}. In this example the user would not be able to decrypt the ciphertext
but would for instance be able to decrypt a ciphertext with respect to {A,C}.
An important property which has to be achieved by both CP- and KP-ABE is called
collusion resistance. This basically means that it should not be possible for distinct users
to "pool" their secret keys such that they could together decrypt a ciphertext that neither
of them could decrypt on their own (which is achieved by independently randomizing
users' secret keys).
Advantages of ABE: ABE offers following advantage:

1. Secure both data in rest and data in transit.
2. Fine grained (Policy-based) access control and flexible access policies.
3. Easier Key Management
4. Efficient on Small Form Factor computers (like Raspberry Pi) [5].

Implementation: We have compiled and tested following open-source ABE
implementation, we may integrate them with Ozone.

• https://github.com/junwei-wang/cpabe

3.1.1.3. Encryption with the proposed data placement policy

Distributed data and object stores manage multiple storage nodes and can ensure
availability and fault-tolerance through replication. However, current solutions consider

https://github.com/junwei-wang/cpabe

14

limited constraints and policies when making data placement decisions. As multiple
stakeholders provide storage nodes to multiple consumers, it is essential to manage
placement according to security and privacy constraints. Furthermore, increasing
heterogeneity in the edge-cloud continuum gives rise to additional hardware requirements,
e.g., processor or storage type. Moreover, operational policies from regulatory bodies
must also be considered, e.g., GDPR which may restrict where certain data can be
located.
Brief Details of CATER
To address the challenges discussed in previous paragraphs, we developed CATER, a
modular poliCy-bAsed daTa placEment fRamework that can integrate with existing
storage systems. We formulate the data placement problem as an optimization model,
constrained by sharing and hardware constraints. We also develop heuristics for real-time
computation. We implement a prototype of CATER and integrate it with Apache Ozone.
The disk sharing and hardware constraints are defined by the applications and given as
the input to the optimization model.
CATER an external data placement framework to optimize the number of nodes used
while respecting all the constraints of various applications deployed on the cluster. Upon
receiving a request to store the data, modified Apache Ozone invokes the placement API
to suggest the list of suitable nodes to be used to store the data.
The placement algorithm has two underlying components as:

• An optimization model that minimizes the number of datanodes while respecting
all application constraints. The problem is formulated as an Integer Linear Program
and solved using a Constrained Programming with Satisfiability methods (CP-SAT)
solver. This solution enables the system to enforce the desired constraints using the
minimum number of nodes. Lesser active nodes lead to lower energy consumption.
• A heuristic algorithm to cope with the real-time evolution of the data store. This
works as an add-on to the optimization model, after the initial placement, to
efficiently handle the modifications in the applications and constraints, and to
minimize data movement operations.

This framework is implemented using an external REST API, independent of a specific
data store. This independence allows the user to integrate the API with any data store.
We changed the part of the data store (Apache Ozone) that selects the list of datanodes.
The modified Ozone uses the API to obtain the datanode list to fulfil the demands of the
application. In the stateful mode, after creating the list, API updates its records for current
allocation to have the details of this new request.
We may have an input parameter for using encryption just like application’s sharing
constraints, hardware, location etc. When an application requires encryption then all the
buckets for the application will be encrypted. For TDE we recommend to have one key per
application. Access policy within the ABE enforces access control using the user’s
attributes.
If all the underlying file systems are the same of all the nodes, then choosing TDE or ABE
is not a placement problem and CATER behaves normally. However, if the file systems
on the nodes support different encryption techniques (TDE/ ABE) then CATER takes
should take care of such situation accordingly.
CATER and TDE
The following figure depicts client and Ozone interaction when TDE is in effect. Client
Interacts with Ozone to request a key. In response Ozone requests KMS to create an
encKey for the client. This encKey is used by the client to create an encrypted bucket.
Once an encrypted bucket is created the files added to this bucket will be encrypted. If the
client tries to read the file, it will be decrypted using the encKey.

15

Figure 3.3 TDE in Apache Ozone

CATER and ABE

Following figure depicts the proposed system flow to integrate ABE with Ozone. The
applications define corresponding attributes and associated access policy. The Key
Management Server keeps the application wise details of the attributes and access
policies. The clients will be provided the key for decryption if their attributed matches with
the access policy defined by the data owner (Applications).

Figure 3.4 ABE in Apache Ozone

Encryption methods are quite useful in securing the data and it adds a further layer of
security over the secure placement policy (CATER). In this period, we studied and
discussing both TDE and ABE in details. TDE secure the data at rest and ABE is capable
of securing the data at rest and during the data in transit. We also suggest guidelines on
how to adopt TDE/ ABE along with the placement policy (CATER) in the Apache Ozone
in context of the BRAINE project.

References:
[1] Goyal, V., Pandey, O., Sahai, A., & Waters, B. (2006, October). Attribute-based encryption for

fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on
Computer and communications security (pp. 89-98).

16

[2] Bethencourt, J., Sahai, A., & Waters, B. (2007, May). Ciphertext-policy attribute-based

encryption. In 2007 IEEE symposium on security and privacy (SP'07) (pp. 321-334).

[3] Ostrovsky, R., Sahai, A., & Waters, B. (2007, October). Attribute-based encryption with non-

monotonic access structures. In Proceedings of the 14th ACM conference on Computer and

communications security, (pp. 195-203).
[4] Goyal, V., Jain, A., Pandey, O., & Sahai, A. (2008, July). Bounded ciphertext policy attribute

based encryption. In International Colloquium on Automata, Languages, and Programming (pp.
579-591). Springer, Berlin, Heidelberg.

[5] Ambrosin, M., Anzanpour, A., Conti, M., Dargahi, T., Moosavi, S. R., Rahmani, A. M., &

Liljeberg, P. (2016). On the feasibility of attribute-based encryption on internet of things devices.
IEEE Micro, 36(6), 25-35.

[6] Hwang, Y. W., & Lee, I. Y. (2020). A Study on CP-ABE-Based Medical Data Sharing System

with Key Abuse Prevention and Verifiable Outsourcing in the IoMT Environment. Sensors, 20(17),
4934.

3.2. Active Data Product (C4.4)

Component ID Component Name Development Owner

C4.4 Active Data Product 65% LUH

GitLab Repository: https://github.com/braine-project/WP4R/tree/main/T41
Containerized: Yes
Registered on BRAINE platform image registry: Yes
Deployed as a pod and is functional on BRAINE platform: No
Integrated with other platform components: No, waiting for UC integration
Status: ...

3.2.1. Technical description

An active data product is indeed a dataset encapsulated in a secure container that allows
access via a well-defined access point that conforms to the terms of an agreed-upon
contract. A data product is said to be active as it can operate in an external environment.
It is indeed a self-contained, secure executable package that must be run in order to allow
for the utilization of the data it contains. When requested by external agents to access the
data, it will ensure that the request and the response comply with contract terms, usage,
sovereignty regulations, and boundaries defined.
A contract definition language using YAML is under development, by which the data owner
can define the terms and conditions for accessing the data. The contract is then enforced
by the contract controller. Any legitimate access to the data will be recorded in a
blockchain for contract term enforcement as well as for auditing and accounting. The ADP
component is a prototype and may not be secure enough for production environments
with high-sensitive data.
Each UC that aims at sharing data with other UCs or external systems/parties may benefit
from this component.

The general user interaction with the ADP is depicted in Figure 3.5 below.

https://github.com/braine-project/WP4R/tree/main/T41

17

Figure 3.5 Interaction model of the ADP and a user (agent)

The ADP encapsulates a dataset (or an AI/ML model) and a contract that governs the
access and usage terms of the dataset. When an agent requests to access data, it needs
to provide the querying parameters. The access point first validates the request by
checking authentication and authorization policies as well as usage policies and terms as
in the contract. Therefore, if the request violates any usage of the terms, the request will
be discarded and a cost associated with it will be submitted to the blockchain. This is to
mitigate denial of service and data exploitation attacks. Any successful request will also
be written to the blockchain for usage tracking. The access point validates the parameters
against the contract terms. For example, an agent may be prevented from filtering data
based on the gender of people in the dataset, or it can be prevented from requesting data
of people under 18 years old. After parameter validation, the request will be passed to the
execution engine to construct the result set from the dataset/model. The result set will also
be validated against contract terms. For example, the input parameters may not explicitly
ask for data about females, but the result may contain such data. If there is a restricting
term in the contract, those records will be dropped from the final response. As both served
and discarded resources are logged in a blockchain via the activity Logging Module, usage
can be tracked not only by the ADP instance but also by the parties of the contract as well
as third parties. At the moment a prototype of the ADP has been implemented and is under
test. The blockchain is simulated by MongoDB, which will be replaced after the contract
controller reaches stable status. Research and development on securing the whole ADP
against malicious agents and contract parties is ongoing.

3.2.2. Advancements

The ADP was utilizing a MongoDB database for storing the transactions produced by the
activities. In this period, LUH has enhanced the component to utilize a blockchain. Now,
ADP can be configured to either use MongoDB (mainly for testing, debugging,
development) or IOTA blockchain for operational purposes.

In brief, IOTA is a blockchain network comprised of a set of nodes that can communicate
to each other via a messaging protocol. The transaction are written to the nodes, so that
each node has the record of the entire network. Usually blockchains have a main network

18

and one or more test/development networks1. In this project LUH has established a
connection to an IOTA test network as shown in Figure 3.6. The ADP instance that runs
on the data consumer facility, will use this connection to submit transactions (contract
data, usage record, and activity logs) to the blockchain, that is outside of the data
consumer realm.

Figure 3.6 ADP connection to the IOTA network

To work with IOTA, ADP utilizes the iota_client2 python library. It relies on the IOTA’s
messaging system as explained in the documentation3, which is brief includes a string
index to identify the message and a data element that contains the actual message
content encoded in UTF-8 format. ADP loads three types of transactions into the message
payload, namely: contract, usage, activity.

Contract transaction type:

On the ADP first run, the contract’s manifest is submitted to the blockchain with a unique
contractID so that the contract itself in maintained in the distributed ledger.

Usage Transaction type

This is the transaction type ADP uses to keep track of all the contractual usages of the
data encapsulated into the ADP container. The transaction contains the contract
term/condition that has been invoked, the counters, limitations, and remaining amount of
the usage topic and any other quotas, and the result of the invocation of the terms. These
transactions are used by the ADP’s contract controller for follow up usage requests, as
well as visible to all parties having access to the blockchain.

Activity Transaction type

All activity and events that have been configured in the ADP’s Activity Log Module will
use this transaction type to submit messages to the blockchain. These transactions are
usually used for administrative, monitoring, or error handling.

3.2.3. Performance Evaluations and comparisons

As mentioned before, ADP now is capable of storing transactions either in MongoDB or
IOTA blockchain. The choice can be made proving the storage endpoint URL to the
Docker container of the ADP.

1 https://v2.iota.org/how-it-works/introduction
2 https://wiki.iota.org/iota.rs/examples/running_examples/
3 https://wiki.iota.org/iota.rs/examples/data_message/

https://v2.iota.org/how-it-works/introduction
https://wiki.iota.org/iota.rs/examples/running_examples/
https://wiki.iota.org/iota.rs/examples/data_message/

19

LUH conducted a set of initial evaluations assessing the functionality of ADP as well as
comparing performance of the system when running on MongoDB versus IOTA
blockchain.

Both variants were tested with identical contracts and the target was to compare the
runtime. It was clear that MongoDB version was faster than the blockchain, first because
the blockchain was hosted remotely and second that a single transaction on a blockchain
takes longer as it requires multiple validations by different nodes and includes a census
too. However, the blockchain performed better than expectation, as summarized in Table
3-1.

Table 3-1 ADP initial performance evaluation on document store and blockchain (milliseconds)

Indicator MogoDB IOTA
blockchain

Login 020 916

Handshake 031 634

Contract term 1 0106 3377

Contract term 2 0130 5583

Contract term 3 0118 4551

Report Module 0072 1328

Get history 0027 1649

In addition to the performance evaluation, LUH tried several times to install and run the
both of the variants. The results suggest that implementation, running, and maintaining
the ADP over IOTA is easier and more stable, bearing lower maintenance cost. The higher
transaction time can be justified by the non-replaceable role of the distributed leger in
establishing trust between the parties allowing them to use the usage transactions as a
basis for licensing and costing.

3.3. Catalyzr Tool (C4.5)

 Component ID  Component Name  Development  Owner 

 C4.5 Catalyzr Tool  50%  SIC

GitLab Repository: No
Containerized: No
Registered on BRAINE platform image registry: No
Deployed as a pod and functional on BRAINE platform: No
Integrated with other platform components: No
Status Report: Catalyzr is a tool for joining work between cryptographer and software
developer for hunting security vulnerability. The capability to track microarchitecture-
induced vulnerabilities (i.e., cache timing attacks) is operational. The Catalyzr has been
deployed for joint work between SIC and ISW to secure ISW software cryptographic
libraries.

20

3.3.1. Technical description

Introduction
The component is a detection tool designed to analyse C source code and to detect
potential vulnerabilities related to micro-architectural side channel attacks.
Those vulnerabilities are basically code statements that cause private data leakages on
certain computer architectures. In the presence of such vulnerabilities, an attacker can
use cache timing attacks to spy on private data. Such attacks rely on the differences of
access time between cache memories and main memories and allow attackers to “guess”
if some data is loaded in the cache memory and being used by the processor.
Such attacks usually target crypto libraries but are applicable to any type of software
program manipulating sensitive data (private keys, passwords, pin codes, etc.). Infamous
exploits like Spectre and Meltdown rely partly on cache timing attacks.

Input and output
The vulnerabilities related to cache timing attacks can be detected at source code level.
Indeed, two types of code lines may lead to such attacks:

• conditional statements testing sensitive data (such as “if” or “switch” in C)
• table accesses using sensitive data as index.

Therefore, the Catalyzr tool is designed as a static code analyser: it takes as input source
code, analyses it, detects vulnerable statements with regards to a sensitive variable
tagged in the code, and finally lists the found lines in a report.
The C language being the most used for crypto libraries development and the most
common target of cache timing attacks (in terms of software executables), it is therefore
chosen as main target language. C++ language can also be supported with minor
modifications of the tool.
The motivation for the tool design is to work hand in hand with software developers. The
user can perform detection checkpoints and iterate all along the development of a software
to ensure that no vulnerability is introduced in the development.

Internal workflow

The internal workflow of the tool in described in Figure 3.7. First, the user must tag

sensitive variables in the source code using a pragma. Sensitive variables include any
data that could compromise the security of a system if known by external attackers (keys,
passwords). Second, the tools build the Abstract Syntax Tree (AST) of the program using
a compiler, and extract paths related to the tagged sensitive variables. Third, it detects all
the statements using direct sensitive variables, or indirect sensitive variables (related to
the tagged one) that could lead to cache timing attack. Finally, the tools gather its findings
in a report, which can be exported in PDF or HTML.

21

Figure 3.7 Internal workflow of the Catalyzr tool

Architecture and dependencies
The architecture of the tool is as follows:

Figure 3.8 Catalyzr architecture

22

The tool is programmed in Python for the backend which includes the code parser and the
vulnerability detection system. It requires the pycparser python package. Regarding the
frontend, the command line interface is written in Java and therefore requires the Java
Runtime Environment. The tool also proposes a web based graphical user interface based
on the Jupyter Lab framework.

3.3.2. State of the Art (SOTA)

Static analysis tools are commonly used in software development. We can mention tools
like Parasoft [1] or Coverity [2] which support different languages and allow to choose
between various rulesets focusing on different aspects of the source code. Usually, good
coding practices are verified with regards to general security, readability, and
maintainability, but side channel security is not included in the scope of the usual tools.
Therefore, this type of tools and rulesets can be seen as complementary to the verification
done by the Catalyzr.
 On the other hand, dynamic analysis tools and methods for side channel security exist,
mostly in the academia. For example, a recent paper proposed the DATA (Differential
Address Trace Analysis) methodology [3], which consists in executing the target software
binary to generate memory access traces used to detect data leakages. This approach
shows impressive results but is only working on x86 architecture. Indeed, dynamic
analysis require the ability to execute the program under test and are therefore
architecture dependant. Dynamic methods also rely on statistic methods and require
multiple executions of the target software. The number of found vulnerabilities is
dependent on this number of executions, while static methods are exhaustive.

References:
[1] Parasoft, S., & SAFE, D. (2016). Parasoft C/C++ test.
[2] https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
[3] Weiser, S., Zankl, A., Spreitzer, R., Miller, K., Mangard, S., & Sigl, G. (2018, August).
DATA-Differential Address Trace Analysis: Finding Address-based Side-Channels in
Binaries. In USENIX Security Symposium (pp. 603-620).

3.3.3. Advancements

In the recent months, a joint work was done with ISW. ISW is developing an application
for their component and the application was using a custom crypto engine (at the time of
the collaboration).
The Catalyzr tool allowed to assess the robustness of the cryptoengine provided by ISW.
The tool was installed on ISW servers, and a remote access was given to SIC engineers
to perform the source code analysis. The crypto engine was analysed in depth, and a
report with the tools findings was delivered to ISW.
The findings of the reports are not detailed here for confidentiality reasons.

3.3.4. Performance Evaluations and comparisons

As explained above, the Catalyzr tool has a better base coverage than the SOTA dynamic
SCA tools because the static approach is exhaustive: it will detect all potential leakages
with a single analysis while dynamic methods require multiple executions of the target
binary with no warranty of finding all vulnerabilities. Conversely, the Catalyzr tool
generates more false positives which can be identified and discarded semi automatically.
The tool also has better portability across platforms as it requires only source code for
analysis

https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html

23

3.4. Authoring tool (C4.6)

 Component ID  Component Name  Development  Owner 

 C4.6  Authoring Tool  90%  ECC 

GitLab Repository: https://github.com/eccenca/braine/tree/main/webclient 
Containerized: Y
Registered on BRAINE platform image registry: Y
Deployed as a pod and functional on BRAINE platform: Y
Integrated with other platform components: Y – The Authoring Tool haven’t been
integrated with the Global Service Registry. 
Status Report: 
The Authoring Tool for service composition is under development. The data model to
support persistence through the Resource & Service Catalog is already implemented
while the development of the user interface has been already initiated. In the next
iterations we expect to have a functional and integrated version working. 

3.4.1. Technical description

Workflow definition language in the last iteration, the Workflow definition was replaced
by Argos. Argos language is based on the YAML file and is an extension of the Kubernetes
concepts. Providing required functionalities in the project scope and users can describe
workflows in a declarative way using manifests (Listing 3.2.1.) in a similar fashion to those
of Kubernetes and Docker. The use of Argos language to model and store workflows
comes naturally, because Argos also provides the workflow engine which is compatible
with the BRAINE architecture choices.

apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
 generateName: hello-world
 labels:
workflows.argoproj.io/archive-strategy: "false"
 annotations:
workflows.argoproj.io/description: |
 This is a simple hello world example.
spec:
 entrypoint: hello-world
 templates:
 - name: hello-world
container:
 image: hello-world

Listing 3.2.1. Argo hello-world workflow example.

Argo Workflows Core Concepts The diagram below illustrates the core concepts in Argo

Workflows (See Figure 3.9). Argo language can be used for workflow definition while the

Argo engine executes and manages its states. The workflow is defined through the
workflow spec template which contains a list specifying the entry point and type of the
workflow. The template defines the instructions to be executed while the entry-point
specifies the primary instruction or template to execute before starting the workflow
execution.

https://github.com/eccenca/braine/tree/main/webclient

24

Figure 3.9 Argo Overview

Templates There are several types of templates in Argo workflow, they define the
required functions of a workflow, typically in a container. Some of them are, but not
limited to:
• Container — schedules a container.
• Resource — directly performs operations on a cluster resource such as GET,
CREATE, APPLY, PATCH, REPLACE, or DELETE.
• Script — a convenience wrapper for a container. The script produces a result that
automatically exports to an Argo variable, for instance:

• {{tasks.<NAME>.outputs.result}}
• {{steps.<NAME>.outputs.result}}

• Suspend — suspends the execution of a workflow for a specified duration until it
is manually resumed.
• Invocaters — invokes or calls other templates and control their execution:
• Steps — allows to define workflow tasks as a sequence of steps.
• DAG — allows to define workflow tasks as a graph of dependencies.

Data model the workflow is handled through two main entities in the BRAINE knowledge
graph:
Workflow Register: the workflow register stores the address of the Argo workflow

endpoint to be used to deploy workflows (see Figure 3.10).

Workflow: the workflow contains the attributes manifest and variables inherited from the

superclass deployable (see Figure 3.11). It is used to store the manifest from Argo

workflow as well as default variables that may be used on its execution.

25

Figure 3.10 Excerpt of BRAINE vocabulary lift highlighting Workflow

Figure 3.11 Excerpt of BRAINE vocabulary highlighting Workflow and Service Profile

 Authoring tool
The authoring tool architecture was updated. Now a web-client communicates directly
between the Corporate Memory and Argos, the workflow execution framework deployed

in the BRAINE platform. Figure 3.12 and Figure 3.13 show respectively the BRAINE web-

client Workflow and Workflow Registry Interfaces.

26

Figure 3.12 Workflow Specification Interface.

Figure 3.13 Workflow Registry Specification interface.

Deployment States
The new architecture makes the use of the formal deployment states deprecated. Now
the web-client can check on the fly information of the running workflow, service or image
on the fly directly on the respective registry. This also simplifies the management and
removes the necessity of data duplication.

3.4.2. State of the Art (SOTA)

In this section, we discuss some SOTA frameworks and languages considered in BRAINE
architecture. Section 4, presents a comparison among them:

27

Airflow is particularly suited to large scale batch processing of corporate data. However,
Airflow has no event processing capabilities and is not well integrated into Docker
containers or Kubernetes.
Dagster similar to Airflow, it is better suited to large scale batch processing.
Spark and Flink are stream and batch processing frameworks that can handle very large
datasets. However, they are not best suited to providing end-to-end real-time
dataflows.
Node-RED is based on Nodejs. It has the disadvantage of providing only limited support
for remote distribution of workflows.
NiFi is an Apache open-source project. It is well suited for Workflows, but it is a standalone
solution and does not integrate well with Kubernetes.
Kubeflow, is tightly integrated into Kubernetes. However, its primary purpose is to
automate the lifecycle of ML models.
Spring Cloud Dataflow can be integrated with Kubernetes and execute workflows.
However, because BRAINE implements services written in a variety of languages such as
Python and prebuilt data processing engines like Spark, it is not well suited for the project.
Argo (argoproj.github.io) is a new open-source workflow engine tightly integrated into
Kubernetes. Its template language and framework are built on top of Kubernetes.

3.4.3. Advancements

Over the last months we re-implemented the web-client adding support for Workflow
authoring and deployment. The BRAINE web-client now has a completely new
architecture. In addition, we enriched our data model with support for workflow storage
management. The authoring tool communicates directly with the different components in
the BRAINE architecture, simplifying the architecture by hiding complex communication

APIs and protocols through friendly user interfaces. Figure 3.14 shows the old architecture

while Figure 3.15 illustrates the new one. It is possible to see the replacement of the

Service and Image Orchestrator by the BRAINE Web Client which communicates directly
with the Workflow Engine as well as Global Service and Image registries. Further the
Authoring Tool also facilitates BRAINE services usage as it allows users to access all
BRAINE functions in a single interface.

28

Figure 3.14 Old Architecture.

Figure 3.15 New Architecture.

3.4.4. Performance Evaluations and comparisons

The Table 3-2 lists some of the most applicable workflow languages and features, which
were considered for the BRAINE project. In the table below, Language indicates the
language used. Many workflow names are used to indicate the workflow language in the

29

absence of a name. DAG stands for Directed Acyclic Graph while K8 Int. Indicates whether
the framework integrates with Kubernetes. Maturity indicates how old the language is.
Framework indicates whether the language has an engine that can interpret it. It is
possible to see that Argo, the framework chosen to manage the workflow execution, is the
best option among them although it is relatively new. The main problem of OWL-S is that
it has no industry-based workflow engine supporting it.

Table 3-2 Workflow Language Comparison

Language DAGs Maturity Declarative/
Imperative/

UI

Framework Handle
Events

Data Size K8
Int.

Airflow Y Est. Imper. Y No Medium N

Dagster Y New Imper. Y Limited Medium N

Spark N Est. Imper. Y Limited Large N

Flink N Est. Imper. Y Limited Large N

Node-RED Y Est. UI Y Yes Small N

NiFi Y Est. UI Y Yes Small N

Kubeflow Y Est. Imper. Y No Large Y

Spring
Cloud
Dataflow

Y Est. Imper. Y Yes Small Y

Argo Y New Declar. Y Yes Medium Y

OWL-S Y Est. Declar. N Yes Medium N

3.5. Service Orchestrator (C4.7)

 Component ID  Component Name  Development  Owner 

 C4.7  Service Orchestrator  50%  ECC 

GitLab Repository: https://github.com/eccenca/braine/tree/main/service-orchestrator 
Containerized: N 
Registered on BRAINE platform image registry: N 
Deployed as a pod and functional on BRAINE platform: N  
Integrated with other platform components: Y – The Service Orchestrator synchronize
service metadata such as status between the Global Service Registry and the Resource
& Service Catalog. 
Status Report: 
The Service Orchestrator is under development being partially functional and
integrated, however it needs further testing and development. 

3.5.1. Technical description

The Service Orchestrator is deprecated and no longer maintained due to the introduction
of the BRAINE Web client (See Figures 3.2.6. and 3.2.7.). The Service Orchestrator
(C4.7) was replaced entirely by component C4.6 in section 3.4

https://github.com/eccenca/braine/tree/main/service-orchestrator

30

3.6. Monitoring Dashboard (C4.8)

Component ID Component Name Development Owner

C4.8 Monitoring Dashboard 95% LUH

GitLab Repository: https://gitlab.com/braine/wp4-monitoringsystem-luh
Containerized: Y
Registered on BRAINE platform image registry: Y
Deployed as a pod and functional on BRAINE platform: Y
Integrated with other platform components: Y
Status Report:
The monitoring dashboard is a visualization system for the time-series metric data that
are stored in InfluxDB (and Prometheus). The dashboard comes with a pre-configured
set of gauges and charts that display various system metrics scraped from node-exporter,
including CPU, memory, disk I/O writing, and network traffic metrics. It is also able to
visualize additional time-series data generated by the UC applications. The monitoring
dashboard relies on the telemetry infrastructure components such as scraper and
database from WP3.
Each device (network switch, compute node), platform component (operating system,
scheduler, data lifecycle manager, etc), and use case may generate metrics and send
them to the telemetry database for storage and processing. The monitoring dashboard
can be tuned to extract general or specific (use case-related) metric data, filter and
aggregate them and then display charts, gauges, or other visual forms of the data.

3.6.1. Technical description

The monitoring dashboard has been completed and the technical details as well as the
source codes have been submitted in D4.2. However, it has remained open to receive
potential feedback from the partners, especially from the UCs. No further development is
anticipated.

3.6.2. Advancements

LUH is working on a multi instance Influx database to allow each of the UCs to store their
monitoring and telemetry data in an isolated database.

3.7. Healthcare Assisted Living (C4.10)

Component ID Component Name Use Cases Owner

C4.10 Exporter for the metrics for the UC1
application ‘AI-driven Digital Twin
solution for new digital ecosystems
enabling Smart Healthcare in
Medical and Caregiving Centres’

UC1 IMC

GitLab Repository: private repository
Containerized: Y
Registered on BRAINE platform image registry: N
Deployed as a pod and functional on BRAINE platform: Y
Integrated with other platform components: work in progress
Status Report:
The use ‘Healthcare Assisted Living: AI-driven Digital Twin solution for new digital
ecosystems enabling Smart Healthcare in Medical and Caregiving Centres’. The goal of
the application to create a digital twin of patients using micro-services and continuous
collection and analysis of patient data. As part of the task of ‘WP4: User-oriented

https://gitlab.com/braine/wp4-monitoringsystem-luh

31

utilization of the edge’ additional component was designed and developed as part of the
adaptation the Edge-based system for human-centric applications.

3.7.1. Technical description

In order to perform correctly UC1 application is needed to collect Key metrics required
for the UC1 monitoring. Such metrics were defined and relevant for the UC1 application,
monitoring tool— metric log connector in short ‘exporter’—was designed and developed
for the telemetry and application monitoring. The exporter for the metrics for the UC1
application connects to the C3.6 and provides an endpoint "/metrics" and sends GET
metrics on request from the Prometheus server. A custom for UC1 application exporter
is deployed as a pod and is functional on BRAINE platform.

The exporter written in Go language, deployed as pod in the system and added to the
service which will be accessed by Prometheus to provide the set of metrics (as required
by Prometheus' exporter implementation).

The overall view of metrics for the UC1 application which runs on EMDC is as follows
(the number of actual metrics is bigger):

• Queue size for command execution, by using the label "queue_type" we make a
separation into several queue types. In doing so we can use one metric and
several labels to get a time series for all queues in the system;

• Command execution time in seconds;

• The number of imported values per execution;

• Number of indicator values calculated per command call;

• Number of object state values calculated in one call to the object state calculation
command;

• Number of active generators;

• Total number of registered users in the system;

• Total number of models in the system;

• Total number of sensors;

• Total number of data elements;

• Total number of indicators;

• Total number of indicator values for all indicators;

• Total number of sensor values for all sensors;

• The total number of values of the data items for all data elements.

The following diagram represented internal workflow of the component on the BRAINE
platform:

• imc-mast01: Grafana service.

• imc-work01: Smart hospital application and Postgresql

• imc-work02: Metric exporter collects metrics on calculations, indicators, imports -
everything that is related to the work of the application itself.

32

• Postgresql metric exporter - collects metrics of the Postgresql itself

C4.10 component “Exporter for the metrics for the UC1 application ‘AI-driven Digital
Twin solution for new digital ecosystems enabling Smart Healthcare in Medical and
Caregiving Centres’” collects more than >250 metrics for the application.

3.7.2. State of the Art (SOTA)

Compared to the state-of-the-art, these advancements have significantly improved the
monitoring and observability of containerized applications in micro-data center
environments. By incorporating such advancements in monitoring and observability for
healthcare applications, we can ensure the reliable and secure operation of our systems.
By leveraging Docker, Kubernetes, Prometheus, and Grafana in UC1 in dealing with the
healthcare environments, the BRAINE enables better visibility into application
performance, proactive issue detection, and efficient resource management, ultimately
enhancing the quality of care provided to patients.

3.7.3. Advancements

The component is linked to the UC1 and cannot be used standalone without other WP4
components e.g. C4.8 and a multi instance Influx database that will allow each of the UCs
to store their monitoring and telemetry data in an isolated database.

3.7.4. Performance Evaluations and comparisons

3.8. Network Telemetry Framework (C4.14)

 Component ID  Component Name  Development  Owner 

 C4.14 Flow telemetry agent 100%  MLNX

GitLab Repository: N
Containerized: Y
Registered on BRAINE platform image registry: N
Deployed as a pod and functional on BRAINE platform: N
Integrated with other platform components: Y – Info: Integrated with Flow P4 program
(C4.14.1)
Status Report:

33

• The flow telemetry agent was tested to add/remove selected traffic flow, the P4
tables are updated with the add/remove entries and telemetry events are sent to
Monitor & exported (C4.14.2).

 Component ID  Component Name  Development  Owner 

 C4.14.1 Flow P4 Program 100%  MLNX

GitLab Repository: N
Containerized: Y
Registered on BRAINE platform image registry: N
Deployed as a pod and functional on BRAINE platform: N
Integrated with other platform components: Y – Info: Integrated with Flow telemetry
monitoring and exporter (C4.14.2) for streaming telemetry data
Status Report:

The P4 program code is done, HW tables are created and new flows can be added
to those tables.

 Component ID  Component Name  Development  Owner 

 C4.14.2 Flow telemetry monitor & exporter 100%  MLNX

GitLab Repository: N
Containerized: Y
Registered on BRAINE platform image registry: N
Deployed as a pod and functional on BRAINE platform: N
Integrated with other platform components: Y – Info: Integrated with Telemetry Adapter
for streaming telemetry data.
Status Report:

HW telemetry events are collected by the component and also exported to remote
collector via gRPC.

3.8.1. Technical description

Considerations for AI-rich environments
Modern GPUs with improved computational capabilities are moving the bottleneck from
compute elements to the communication infrastructure. Distributing AI workloads over

multiple workers connected with high-speed network cause to enlarge the bandwidth
demand and predictable latency that can be solved by increased cost of using networks
with constant bisectional bandwidth or alternatively can be applied in cost effective shared
multitenant oversubscribed networks.
Nature of ML algorithms create an asymmetric many-to-one or many-to-many workflows

that may result in communication loss and high task completion latency.
Oversubscription and resource limit can be resolved by changing the learning algorithms,
adapting the synchronization approaches, optimizing the worker locations, using in-
network computation, and providing efficient feedback from the network back to the
transport and applications, so the latter can adapt its behavior.

Specification of the flow-based telemetry
Network telemetry can help to identify network failures, infrastructure malfunctioning,
performance bottleneck and behavioral inefficiencies. Detailed analysis of those problems
can help to find application that cause such problems or network configurations that limit
the network performance.
Flow level telemetry (in-band or post-card based) will provide flow benchmarking in terms
of latency, routing, and path load. Attaching application labeling to the network flows will

34

provide end-to-end context and enable application-level analysis and identify multitenancy
dependencies.
The flows to be monitored are defined through specifically enforced flow entries. Flow
definition is application and topology specific and should be defined in programmable way
to enable verity of use-cases and setups. Flows can be simple (e.g., p2p) or can have a
network span e.g., for many-to-many communication pattern.
After the flows are defined, every flow will produce a benchmark for the subset of packets
that pass via specified flow. The benchmark results will be collected in the central location
to aggregate the data for visualization and immediate and historical analysis.

Figure 3.16 Network telemetry monitoring system

The telemetry framework is responsible to generate and collect telemetry information
regarding the single network node.
The framework consists of the following sub-components:

• P4 program
o Runs in HW so it doesn’t affect the normal network behaviour
o Identifies the flows of interest that should be monitored
o Produces the subset of information that should be exported
o Exports telemetry information and generating telemetry events

• P4 agent application
o Interacts with higher layer controllers to for configuration and flow
description
o initializes and configures P4 program to add/remove flows that should be
monitored.

• Monitoring and export unit
o processes raw telemetry data
o converts it to a format that can be used by collectors

Following interfaces are used to communicate between components and external
interfaces:

• P4 programs based on P4-lang to program data plane of network elements and
telemetry collector
• gRPC to export the data from Network telemetry framework to adapter unit (see
above Figure 7.1)

35

Flow telemetry Agent (C.4.14)
The Flow Telemetry agent is responsible to initialize and configure the P4 program that
was auto-generated by MLNX P4 backend compiler. This interface will be called by SONiC
NOS CLI. The agent also configures the needed HW capabilities to enable telemetry
reporting (Mirror). An example configuration is a Flow (5 tuples) that should be monitored.
Once the selected network session/flow was added to P4 tables, the HW will send
telemetry events to the Telemetry monitor & exporter components.

Flow P4 program (C4.14.1)
The Flow telemetry P4 program is responsible to configure the low-level HW to support
the P4 program written in P4-lang. In the flow telemetry case, this is a P4 table monitoring
5 tuples and mirroring the sampled traffic to the switch's CPU for reporting to the remote
collector.
The P4 table holds entries with 5 tuple keys and mirror actions. Below is the P4 table used
for flow telemetry:

Figure 3.17 P4 source code to define the flow telemetry table

Telemetry Monitor and exporter (C4.14.2)
The telemetry monitor & exporter is responsible to collect and report telemetry data from
network elements regarding network node behaviours and the traffic passing over the
network node.
This component will wait for selected telemetry events from HW (that was configured by
the P4 program C4.14.1) and will generate a report via gRPC to the Adapter component
(WP3.3 C13.17.1).
Below is the example gRPC proto3 example that is used to stream data from the telemetry
monitor & exported to the Adapter component.

36

Figure 3.18 gRPC proto3 example used in the telemetry monitor & exporter

Telemetry Adapter
Developed in WP3 (C 3.17.1)

3.8.2. State of the Art (SOTA)

Current telemetry solutions relay on various sources that produces telemetry data in
independent manner (e.g., draft-wu-t2trg-network-telemetry or pingmesh):

• SNMP traps and counters
• Syslog
• Flow information
• Topology
• Proactive probe metering

Those solutions provide limited visibility to the network resource state, are hard to
correlate, don’t care on the network operation state, work in periodic manner, are
independent of actual network traffic pattern and add significant load to the network and
network control plane.
Proposed approach is always on, can be provisioned on demand, very focused on real
applications that are running in the given network and have low impact on underlying
network as mostly run in HW.
For AI/ML workload P4 programmability and flow base telemetry is new option that can
lead to better application performance utilizing detailed on-demand telemetry data
produced in HW with application flow resolution.

3.8.3. Advancements

The key advancements for the network devices are based on the features shared in
Section 3.6.1.
AI/ML workloads require high network bandwidth, low latency, and reliable transport to
improve job completion time.
As mentioned above current telemetry solutions are too generic and doesn’t enable to do
efficient job scheduling based on the network performance, do not enable applications to
receive updated network state to correlate their behaviour.
To implement advanced on demand network telemetry we propose to include:

https://datatracker.ietf.org/doc/html/draft-wu-t2trg-network-telemetry-00
https://dl.acm.org/doi/10.1145/2829988.2787496

37

• Programmable (P4) per flow telemetry – to provide HW generated application
tailored data
• Per port statistics (e.g. bandwidth and packet drops) – to detect network outages
• Network protocol state (e.g., BGP) – to detect major network event
• Streaming telemetry data (communicate network events in real time, gRPC) – to
reduce load on the network devices and provide advanced filtering to get only
requested data

The streaming of telemetry data was done using YANG data model to structure the
network information and enable fast integration with 3rd party tools. Structuring the data in
a standard YANG model enable multi-vendor devices to stream telemetry data.
The key metrics collected per flow are:

• Latency (nsec)
• buffer-occupancy (Byte)
• Ingress/Egress ports

Using advanced telemetry in SLA brokers:

The advanced telemetry data sent by the network elements using the above infrastructure
can be used by the SLA Broker from WP3.4 to enable the SDN controller to react to the
network changes in real-time.

In WP3.4 the SDN controller can react on high latency and on network failures alarms, an
example improvement can be to also act on high buffer-occupancy alarms and enable
early detection of congestion buildup that impact latency.

Also, SDN controller based on bandwidth information collected from the network can
select a better placement for the bandwidth hungry workloads.

In WP3.3 the BRAINE DKB delivers CPU and RAM telemetry to enable AI/ML models to
be able to predict resource demand.

The proposed solution is not limited only for above metrics but is capable to
accommodate more metrics like latency and also flow based telemetry, to improve
the ML base workload predication models.

Figure 3.19 WP3.4 Main EMDC components and closed-loop telemetry workload.

38

3.8.4. Performance Evaluations and comparisons

In this task evaluation we used the Telegraf, InfluxDb and Grafana (TIG) stack.
This was used for viewing and analyzing the telemetry data.
TIG is constructed of the following components:

• Telegraf: The tool that collects the data from the input with a specific format and
forwards it to the Influxdb
• Influxdb: The database where the data is stored (e.g.: dropped packets per port)
• Grafana: The visualization dashboard that presents the received data from the
Influxdb in a graphical manner

In the below figure we can see an example for flow telemetry and the detection of
increase in flow latency due to queue/buffer build up and jump in bandwidth.

Figure 3.20 Grafana view for flow base telemetry

39

Figure 3.21 Grafana view for discarded packet

In the below figure we can see an example for BGP peer connection drop detection that
can impact the network.

Figure 3.22 Grafana view for BGP protocol stat

40

4. Conclusion

This document provides the status report for the second half of the key software

components developed under WP4 for development and integration as part of the overall

BRAINE platform. Most of the development effort has been completed. Some components

are still undergoing integration and testing with other WPs, more specifically with use-

cases in WP5. Partners are planning the integration activities with corresponding use-

cases.

41

5. References

[1] ETSI, “Multi-access edge computing (MEC); framework and reference architecture,” ETSI GS
MEC 003, V3.1.1, pp. 1–29, 2022.

[2] 3GPP, “Technical specification group services and system aspects; management and
orchestration; study on enhancements of edge computing management,” TR 28.814 V17.0.0, pp.
1–49, 2021.

[3] A. Giannopoulos et al., "Supporting Intelligence in Disaggregated Open Radio Access Networks:
Architectural Principles, AI/ML Workflow, and Use Cases," in IEEE Access, vol. 10, pp. 39580-
39595, 2022, doi: 10.1109/ACCESS.2022.3166160.

[4] E. Pateromichelakis, F. Moggio, C. Mannweiler, P. Arnold, M. Shariat, M. Einhaus, Q. Wei, .
Bulakci, and A. De Domenico, “End-to-end data analytics framework for 5G architecture,”

IEEE Access, vol. 7, pp. 40 295–40 312, 2019.

[5] K. Papadakis-Vlachopapadopoulos, I. Dimolitsas, D. Dechouniotis, E. E. Tsiropoulou, I.
Roussaki, and S. Papavassiliou, “Blockchain-based slice orchestration for enabling cross-slice
communication at the network edge,” in 2020 IEEE 20th International Conference on Software
Quality, Reliability and Security Companion (QRS-C), 2020, pp. 140–147.

[6] B. Ma, W. Guo, and J. Zhang, “A survey of online data-driven proactive 5G network optimisation
using machine learning,” IEEE Access, vol. 8, pp. 35 606–35 637, 2020.

[7] D. Giannopoulos, P. Papaioannou, C. Tranoris, and S. Denazis, “Monitoring as a Service over
a 5G Network Slice,” in 2021 Joint European Conference on Networks and Communications and
6G Summit (EuCNC/6G Summit), 2021, pp. 329–334.

[8] J. Prez-Romero, V. Riccobene, F. Schmidt, O. Sallent, E. Jimeno, J. Fernndez, A. Flizikowski,
I. Giannoulakis, and E. Kafetzakis, “Monitoring and analytics for the optimisation of cloud enabled
small cells,” in 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design
of Communication Links and Networks (CAMAD), 2018, pp. 1–6.

[9] A. Mudvari, N. Makris, and L. Tassiulas, “ML-driven scaling of 5G Cloud-Native RANs,” in 2021
IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6.

[10] P. Veitch, J. Browne, and J. Krogell, “An integrated instrumentation and insights framework for
holistic 5G slice assurance,” in 2020 6th IEEE Conference on Network Softwarization (NetSoft),
2020, pp. 247–251.

[11] F. Cugini, D. Scano, A. Giorgetti, A. Sgambelluri, P. Castoldi, and F. Paolucci, “P4
programmability at the network edge: the BRAINE approach [invited],” in 2021 International
Conference on Computer Communications and Networks (ICCCN), 2021, pp. 1–9.

[12] L. Sanabria-Russo and C. Verikoukis, “A cloud-native monitoring system enabling scalable
and distributed management of 5G network slices,” in 2021 IEEE International Mediterranean
Conference on Communications and Networking (MeditCom), 2021, pp. 42–46.

[13] R. Casellas, R. Martnez, L. Velasco, R. Vilalta, P. Pavn, D. King, and R. Muoz, “Enabling data
analytics and machine learning for 5G services within disaggregated multi-layer transport
networks,” in 2018 20th International Conference on Transparent Optical Networks (ICTON), 2018,
pp. 1–4.

[14] S. Hu, W. Shi, and G. Li, “CEC: A Containerized Edge Computing Framework for Dynamic
Resource Provisioning,” IEEE Transactions on Mobile Computing, pp. 1–1, 2022.

[15] S. Pramanik, A. Ksentini, and C. F. Chiasserini, “Characterizing the computational and memory
requirements of virtual rans,” in 2022 17th Wireless On-Demand Network Systems and Services
Conference

(WONS) IEEE, 2022, pp. 1–8.

[16] T. Subramanya and R. Riggio, “Machine learning-driven scaling and placement of virtual
network functions at the network edges,” in 2019 IEEE Conference on Network Softwarization
(NetSoft), IEEE, 2019, pp. 414–422.

42

[17] X. Foukas and B. Radunovic, “Concordia: Teaching the 5G vRAN to share compute”, in
Proceedings of the 2021 ACM SIGCOMM 2021 Conference, 2021, pp. 580–596.

[18] A. Flizikowski, E. Alkhovik, M. M. Mowla, and M. A. Rahman, “Data Handling Mechanisms and
Collection Framework for 5G vRAN in Edge Networks,” 2022, IEEE Conference on Standards for
Communications and Networking (CSCN), ACCEPTED.

[19] Flizikowski, Adam; Alkhovik, Evgeniy; Mowla, Md Munjure; Rahman, Md Arifur (2022):
Importance of Workload Prediction of Virtualized RAN in the Edge Micro Data Center. TechRxiv.
Preprint. https://doi.org/10.36227/techrxiv.21644708.v1

[20] R. Agrawal and R. Adhikari, “An introductory study on time series modeling and forecasting,”
Nova York: CoRR, 2013.

[21] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no.
8, pp. 1735–1780, 1997.

[22] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-BEATS: Neural basis expansion
analysis for interpretable time series forecasting,” arXiv preprint arXiv:1905.10437, 2019.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning library,”
Advances in neural information processing systems, vol. 32, 2019.

[24] Y.-W. Cheung and K. S. Lai, “Lag order and critical values of the augmented dickey–fuller test,”
Journal of Business & Economic Statistics, vol. 13, no. 3, pp. 277–280, 1995.

[25] L. N. Smith, “Cyclical learning rates for training neural networks,” in 2017 IEEE winter
conference on applications of computer vision (WACV). IEEE, 2017, pp. 464–472

[26] Chen, Tianqi, et al. "{TVM}: An automated {End-to-End} optimizing compiler for deep learning."
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 2018.

[27] Alsulbi, Khalil, et al. "Big data security and privacy: A taxonomy with some HPC and blockchain
perspectives." International Journal of Computer Science & Network Security 21.7 (2021): 43-55.

[28] Rhahla, Mouna, Sahar Allegue, and Takoua Abdellatif. "Guidelines for GDPR compliance in
Big Data systems." Journal of Information Security and Applications 61 (2021): 102896.

[29] Truong, Nguyen Binh, et al. "Gdpr-compliant personal data management: A blockchain-based
solution." IEEE Transactions on Information Forensics and Security 15 (2019): 1746-1761.

[30] Chikhaoui, et al. Multi-objective optimization of data placement in a storage-as- a-service
federated cloud. ACM Transactions on Storage (TOS) 17, 3 (2021), 1–32.

[31] Li, C., Bai, J., et al. “Joint optimization of data placement and scheduling for improving user
experience in edge computing”. Journal of Parallel and Distributed Computing 125 (2019), 93–105.
[32] Long, S.-Q et al. “A multi-objective optimized replication management strategy for cloud
storage cluster.” Journal of Systems Architecture 60, 2 (2014), 234–244.

[33] Padmanaban, R., et al. “HadoopSec: Sensitivity-aware Secure Data Placement Strategy for
Big Data/Hadoop Platform using Prescriptive Analytics.” GSTF Journal on Computing (JoC) 5, 3
(2020).
[34] Revathy, P., et al. “Hadoopsec 2.0: Prescriptive analytics-based multi-model sensitivity-aware
constraints centric block placement strategy for hadoop.” Journal of Intelligent & Fuzzy Systems
39, 6 (2020), 8477–8486.

[35] C. -C. M. Yeh et al., "Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View
That Includes Motifs, Discords and Shapelets," 2016 IEEE 16th International Conference on Data
Mining (ICDM), 2016, pp. 1317-1322, doi: 10.1109/ICDM.2016.0179.

https://doi.org/10.36227/techrxiv.21644708.v1

