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1. Executive summary 

Work Package 4 delivers 15 software components that not only interact with each other 

to build part of the EMDC platform, but also, they are utilized by the use-cases. This 

deliverable is the technical report that communicates the final outcome the first part 1 of 

the WP4 components. In the first part, 7 components are described in details, their state-

of-the-art as well as the advancements they contribute are presented, and for each 

component a list of performance indicators have been introduced, measured, and 

reported. The listed components include: 

• Data management framework for AI environments that provides applications at the 

edge nodes with access to data while ensuring data availability, co-location, 

replication, provenance and other capabilities as defined in the task 

• Data handling in edge nodes consisting of dataset generation to serve as inputs 

for AI-bound use cases, as well as software systems for their resource-efficient 

ingestion and processing at the edge.  

• vRAN optimizations based on AI/ML use-cases analysis to identify optimization 

strategies for vRAN, based on the contextual information produced by the AI/ML 

models delivered in the work package. 

This deliverable presents the technical details, the state-of-the-art, the advancements, and 

the performance evaluation of the listed WP4 components. 



 

 

2. Introduction 
WP4 has produced 14 components, which their specification, features, and performance 
will be reported in two deliverables, D4.3 (this document) and D4.4. Based on the DoA's 
requirements, D4.3 includes the following sections and results, which cover 8 of the 
components, belonging to the following categories: 

• A data management framework for AI environments: This deliverable section 
will be a software system that provides applications at the edge nodes with access 
to data while ensuring data availability, co-location, replication, provenance and 
other capabilities as defined in the task. 

• Encapsulation of data sovereignty with data access APIs: This deliverable 
section will be a software system that is able to encapsulate a given dataset so 
that its usages a redefined, agreed upon in advance, and controlled during the 
utilization time. The software guarantees that the data can only be used for the 
purposes defined and only by the target audience. The software provides access 
to the contained data only through its defined APIs. 

• Data handling in edge nodes: This deliverable section will consist of dataset 
generation to serve as inputs for AI-bound use cases, as well as software systems 
for their resource-efficient ingestion and processing at the edge. 

• vRAN optimizations based on AI/ML use-cases analysis: This deliverable 
section will identify optimization strategies for vRAN, based on the contextual 
information produced by the AI/ML models delivered in the work package. 

The rest of the components will be reported in the same way in D4.4. 
To clarify the components’ distribution among the two deliverables, table below indicates 
partners responsible for each of the components and the deliverable (D4.3 or D4.4) each 
component will be reported in. 
 

Partner Components Deliverable 

ISW vRAN with adjustments (C4.12) D4.3 

FS Motif Discovery Tool (C4.11) D4.3 

UCC Data Placement (C4.9) D4.3 

DELL Data lifecycle manager (C4.1) 

Policy manager (C4.2) 

Global File System (C4.3) 

D4.3 

D4.3 

D4.3 

NEC AI platform profiling engine (C4.13) D4.3 

LUH Active Data Product (C4.4) 

Monitoring Dashboard (C4.8) 

D4.4 

D4.4 

SIC Catalyzr tool (C4.5) D4.4 

ECC Authoring tool (C4.6) 

Service Orchestrator (C4.7) 

D4.4 

D4.4 

IMC Healthcare Assisted Living (C4.10) D4.4 

MLNX Network Telemetry Framework (C4.14) D4.4 

 

 



 

 

An architecture diagram of where these components integrate as part of the overall 
BRAINE architecture can be seen in … below highlighted in green. Note that while 
C4.11 and C4.13 are developed by use case partners, the features provided are capable 
of acting as a service which could be consumed by any other use cases where desired, 
hence their inclusion in WP4. C4.12 integrates as part of the overall workload placement 
framework, influencing workload distribution of vRAN components based on the overall 
systems current state. 

 
Figure 2.1 BRAINE Architecture Diagram showing components developed in D4.3 



 

 

3. Status of the components 

3.1. Data lifecycle manager (C4.1) 

Component ID Component Name Development Owner 

C4.1 Data lifecycle manager 100% DELL 

GitLab Repository: https://gitlab.com/braine/wp4-datalifecyclemanager 

Containerized: Yes 

Registered on BRAINE platform image registry: Yes 

Deployed as a pod and is functional on BRAINE platform: Yes 

Integrated with other platform components: Yes – Apache Ranger/Ozone + K8S 

Status: Completed 

3.1.1. Technical description 

The Data Lifecycle Manager (DLCM) is designed as a means to immutably track the use 
of a users’ data on the BRAINE platform. This is relevant for both user data privacy, and 
government authority data regulations. For any platform that manages external customer 
data, it is important that a verifiable method for monitoring and auditing any and all events 
that occurred with a specific users’ data exists. The DLCM enables this functionality in 
conjunction with the policy manager, global filesystem, and Kubernetes.  

As part of a standard deployment of the BRAINE platform, 2 sets of data policies can be 
described. One set is defined according to EU GDPR best practices and guidelines for 
data management. The other set is user-configurable polices to allow/deny data sharing 
and access to other users and services as requested by the user. These polices are stored 
by Ranger and as the Apache Ozone global filesystem is accessed, any data event such 
as creation, access, modification, and deletion are captured by Ozone and Ranger and 
stored in its Audit DB, along with the defined policies in its Policy DB. 

One potential issue with Rangers Audit DB is that all events are stored in an unencrypted 
database, which could easily be attacked and/or modified by a malicious user or software. 
This makes it an unreliable and unusable method of auditing how a users’ data was 
managed on the platform on its own. As such a method which can guarantee the integrity 
of the audit DB needs to be designed. An immutable ledger is a transaction log where 
once the transaction is written in an entry, it cannot be deleted or modified in anyway way. 
A blockchain is the most common example of an application of immutable ledgers.  

The IOTA blockchain was chosen as the immutable ledger to use to provide this feature 
for the platform, due to its low processing requirements for adding new transactions and 
data to the blockchain. It’s low compute requirements give it good flexibility for use as an 
immutable ledger in edge environments. It can also be easily distributed across edge 
nodes, and functions as a fully private blockchain distributed across BRAINE EMDC(s) in 
this application.  

https://gitlab.com/braine/wp4-datalifecyclemanager


 

 

 

Figure 3.1 Data Lifecycle Manager Architecture 

The DLCM thus takes in the auditory information from Apache ranger (plus the associated 
data users from Kubernetes), and formats and converts that data for ingestion as a 
transaction to the IOTA blockchain ledger. The DLCM maintains an active sync state 
between the IOTA blockchain and Apache Ranger audit DB and will actively monitor for 
intrusion detection and system attacks by periodic state comparisons between both 
systems. In order to maintain blockchain state at least one message per second is 
required to be written to the blockchain to verify its synchronization. In order to easily 
identify these “blank” messages from those which are useful, an index value can be 
attached to a message in the IOTA client when sending data to be written to the 
blockchain. In this case we can simply choose the index “apache_ranger” to signify the 
where the data originates from and enable a user to quickly filter for messages that only 
pertain to a particular application they are looking for. This method can also be applied for 
other BRAINE components and use cases that would benefit from an immutable ledger. 
An example of the searching and filtration of indexed messages can be seen in Figure 3.2 
below, showing 7378 indexed data lifecycle events recorded.  

Figure 3.3 shows the data contained within one of these indexed messages, which is 
formatted to be JSON readable. Note the similarities to how Ranger captures data lifecycle 
events in C4.2. The component health, sync status, and message rate can also be seen 
in the top right. Hornet is the term given to the IOTA blockchains main service component 
that maintains the front-end API’s and message/block writing. Note that to reduce overall 
storage consumption the hash values of Ranger entries could also be stored instead of all 
metadata. This comes with the disadvantage of only detecting a tampered entry, but what 
values were actually modified will not be known.  



 

 

 

Figure 3.2 Indexed Ranger Entries in IOTA Blockchain 

 

 

Figure 3.3 Data contained within an IOTA blockchain message 

3.1.2. State of the Art (SOTA) 

To the author’s knowledge, this is the first time that an immutable ledger has been 
integrated with Apache Ranger for the purposes of data lifecycle management and 
monitoring of GDPR compliance. Publications as recent as 2021 discuss the possibility of 
implementing an immutable ledger blockchain for this purpose but did not proceed feeling 



 

 

limitations of blockchain size would be too severe[27]. Our solution consumes ~250GB over 
10 years plus the lifecycle metadata and number of replicas. We deem this to be 
acceptable considering current node storage capacities and future growth in storage 
capacity. Other publications mention that while Ranger forms a good base for monitoring 
data platform GDPR compliance, it requires supporting components in order to provide 
verifiability and auditability to an acceptable EU standardi.  

3.1.3. Advancements 

As mentioned in section 3.1.2, the integration of Ranger, IOTA, Ozone, and Kubernetes 
to form this data lifecycle manager is unique and has not been previously performed 
according to current literature. The integration of a blockchain-based immutable ledger to 
form part of an overall data privacy and security monitoring platform has also been 
discussed and designed, but seemingly not implemented. A data management platform 
based entirely on the blockchain does exist however[28]. This represents new 
advancements in the field of data lifecycle management within the BRAINE project and 
with the open-source nature of the supporting components this implementation can be 
distributed to the public and continue to be further improved on in future. While the system 
is functional, improvements to performance, scalability, and additional features are 
possible. 

3.1.4. Performance Evaluations and comparisons 

Performance evaluations for this component come in the form of analysis of the IOTA 
blockchain and lifecycle manager to maintain synchronization with Apache Ranger. For 
this test we investigate the maximum number of entries and hence messages/blocks are 
written within a given time. In Figure 3.4 we start from a state of 1476 data lifecycle events 
in Apache Ranger and an uninitialized IOTA blockchain. We then start the synchronization 
service and measure the time taken to sync all entries between IOTA and Ranger. It can 
be seen here that it synchronized the 1476 entries in 4.7638 seconds. Giving a messaging 
and block writing rate of approx. 310 messages per second. As mentioned in the previous 
section there is no direct comparison for this evaluation to a similar standard, however 
[28] gives the closest approximation, with a write throughput of 167 transactions per 
second.    

 

 

Figure 3.4 Testing maximum message rate from Ranger to IOTA 

The messaging rate can also be monitored in real-time via the IOTA Hornet service 
dashboard. This can be seen below in Figure 3.5 at the top right, showing a message rate 
of 306 messages per second under load. Note the total system data storage and RAM 
usage also. 



 

 

 

Figure 3.5 Message Per Second (MPS) Rate as reported by IOTA under load 

The CPU load rate of the ingestion node (i.e. the server) can be seen in Figure 3.6. The 
ingestion node is parallelized into 4 threads/processes, with only 3 of 4 threads being 
utilized and none to maximum load. This implies that the performance limit in I/O load is 
currently due to the client side (the data lifecycle manager service) which is single 
threaded. This service can be multi-threaded in future to improve performance above 1200 
MPS, however 300 MPS was already deemed sufficient for demonstration and current 
BRAINE use case requirements. Note also the RAM usage of up to 140MB per ingestion 
process under load.  

 

Figure 3.6 IOTA server-side load at 300 MPS 

Figure 3.7 shows the long-term stability of the system and resource profile over time. The 
CPU usage of the DLCM components while idling at 1MPS is below 1% usage, with RAM 
usage below 512MB in total. Each ingestion process cleans its RAM pool once it reaches 
~140MB. This can be seen in Figure 3.7 where it drops to 81.3MB. It can also be seen in 
Fig 3.7 that the storage usage of the blockchain has grown to 1.56GB over 3 weeks and 
2 days, this includes the DLCM data (7378 entries). It can then be estimated that the total 
storage consumption of the blockchain itself (less data) to be ~250GB over 10 years. This 
is an acceptable range for an EMDC edge node, where multi-TB NvME storage can be 
expected on each node.  



 

 

 

Figure 3.7 Long term stability and resource usage 

3.2. Policy manager (C4.2) 

Component ID Component Name Development Owner 

C4.2 Policy manager 100% DELL 

GitLab Repository: https://gitlab.com/braine/dmf 

Containerized: Yes 

Registered on BRAINE platform image registry: Yes 

Deployed as a pod and is functional on BRAINE platform: Yes 

Integrated with other platform components: Yes. Data Storage and Data Lifecycle 
Manager 

Status: Development of the policy manager is complete with containerized application 
running as pods on the BRAINE platform along with its dependencies. The manager is 
based on Apache Ranger and is integrated with Apache Ozone which is the distributed 
data storage system of the BRAINE platform. 

3.2.1. Technical description 

The policy manager is a sub-component of the data lifecycle management component and 
performs three main tasks.  

• It provides a way to administrators for creating and managing policies and store 
them in a machine-readable format.  

• It serves as an authorization agent and in addition to managing policies it enforces 
them through a plugin. The policy manager ensures that any access to user data 
is in accordance with the policies set out by data controllers or administrators. 

• The policy manager also creates an audit log of the access requests and provides 
them as an input to the data lifecycle manager (C4.1) This access log is comprised 
of a list of all access requests by all authorized as well as unauthorized clients, i.e., 
all allowed and rejected access requests are logged.  

https://gitlab.com/braine/dmf


 

 

In BRAINE platform, Apache Ranger is selected as the policy manager and is used to 
managed and enforce access policies. A Web UI is configured to act as the Ranger admin 
and provide an interface for administrators to add or modify policies. Apache Ranger is 
also configured with the global file system (C4.3) through a Ranger plugin that replaces 
the default Ozone authorization class and connects with the Ranger admin.  

In terms of granularity, the policies can be applied to all the hierarchical levels of Ozone 
file system i.e., volume, bucket, or a key. A key in Ozone represents an object or a file. 
Similarly, the audit logs can be enabled for each level of granularity, by applying them to 
the corresponding policies. The permission types include read, write, create, list, and 
delete. Both policies and audit logs can be configured to manage one or multiple of these 
permissions. 

Additionally, the policy manager component also manages location-based policies or 
hardware and space requirements that are applied by the BRAINE data placement 
framework (C4.9) as a constraint when optimizing or selecting data nodes. These policies 
are managed using a key-value store which is accessed by the data placement framework 
when needed. 

3.2.2. State of the Art (SOTA) 

Section 3.4.2 mentions some of the existing works in literature that handle and apply 
policies when carrying out certain operations. The data management and placement 
framework in BRAINE goes beyond these SOTA approaches and handles more dynamic 
and versatile set of policies. The job of the policy manager is to ensure that these policies 
are stored in an efficient manner and made available to various management components 
when needed. 

3.2.3. Advancements 

One of the key features of the BRAINE policy manager is that it runs as a micro-service 
in BRAINE’s Kubernetes-based platform and provides a fully containerized solution with 
well-defined endpoints and APIs for access by other system and management 
components. This is also true for all of its dependencies as well as integration with other 
BRAINE components, e.g., Ozone ranger plugin mentioned in Section 3.2.1. 

Furthermore, the policy manager provides administrators with an ability to define and 
store, complex and granular policies, in a well-defined structure. E.g., for a particular 
application, an administrator may define policies and requirements in terms of the type of 
hardware needed, amount of storage space required, privacy or sharing constraints, list 
of other applications that are allowed or not allowed to share a node with this application. 
The ability to define such policies can extend the functionality of the data lifecycle 
management in a dynamic and heterogonous environment and allow applications to be 
managed and scheduled in a more efficient and secure way. 



 

 

3.2.4. Performance Evaluations and comparisons 

The figure below shows a sample list of policies created for Ozone storage.  

 

As the figure shows, the provided interface allows adding policies on a highly granular 
level in Ozone in terms of the files or directories as well as users or groups of users. 
Similarly, the access logs are also generated with high granularity, as shown in the figure 
below. 

 

 

Figure 3.9 A screenshot of the policy definition UI 

 

One of the key purposes of the policy manager, as mentioned in Section 3.2.1, is to 
provide a list of policies or audit logs to other system components in the BRAINE platform, 
e.g., data lifecycle manager (C4.1), global file system (C4.3) and data placement 
framework (C4.9). This was achieved successfully as is shown in the results and 
evaluation of the corresponding components, where large-scale experiments were 
conducted with hundreds of policy requests or audit log requests. The policy manager was 
able to successfully handle these requests and serve BRAINE components in an efficient 
and satisfactory manner (see results of the aforementioned components for further 
evaluation). 

Figure 3.8 An example of policy definition 



 

 

 

3.3. Global File System (C4.3) 

Component ID Component Name Development Owner 

C4.3 Global File System 100% DELL 

GitLab Repository: https://gitlab.com/braine/dmf 

Containerized: Yes 

Registered on BRAINE platform image registry: Yes 

Deployed as a pod and is functional on BRAINE platform: Yes 

Integrated with other platform components: Yes 

Status: The development of data storage system based on Apache Ozone is complete 
and the sub-components have been deployed as pods and services in the BRAINE 
platform. C4.3 is a storage solution that provides a unified filesystem and object store 
for applications and workloads running on the platform. It has been integrated with other 
system components such as data placement framework and policy manager, as well 
as use-case applications that require persistent storage. Further integration activities 
may be carried out in WP5, based on use-case requirements. 

3.3.1. Technical description 

The goal of the distributed data storage solution is to configure all the available storage 
space on BRAINE EMDC as a single file system, creating a distributed pool of storage 
resources, such that they can be accessed by different workloads dynamically. As the 
BRAINE platform is based on Kubernetes (K8s), the storage solution must also provide 
stateful K8s applications with a persistent volume (PV) to store their stateful data. This is 
achieved through Container Storage Interface (CSI). However, additional, and multiple 
access interfaces must also be provided for external applications or applications that are 
built with certain requirements e.g., S3 interface or Hadoop HDFS. Based on these and 
other storage system requirements for BRAINE’s EMDC and use-cases, we compared 
different file systems, and selected Apache Ozone to build the storage system on. Ozone 
is a top-level Apache project designed to scale to billions of objects and manage 
thousands of nodes. In addition to integrating Ozone with policy manager (as explained in 
Section 3.2), there were two key features added to Apache Ozone to meet the 
requirements missing from the default Ozone packages.  

 

Modification of Ozone source code for interaction with data placement framework 

Ozone makes a data placement decision when it receives a request to store a file or object. 
By default, Ozone randomly selects nodes for data placement. This is not a suitable 
approach for applications with various constraints and we modify this behavior. We modify 
this step to call an external API which implements placement algorithm. The API call 
returns the list of data nodes on which the application's data is to be placed to satisfy the 
specified constraints. We implemented the call to the placement algorithm as an external 
API as this allows re-use of this component when integrating with other object stores than 
Ozone.  

The Ozone implementation details are depicted in the following Figure. The Ozone 
Manager (OM) component receives requests to store files. OM forwards the request to 
the Storage Container Manager (SCM) as a block allocation request. The SCM forwards 

https://gitlab.com/braine/dmf


 

 

this request to the Block Manager (BM) component. We modified the BM to invoke the 
external placement API which returns a list of nodes to be used for placement. After this 
the BM uses the list obtained to send a file-creation request to the Container Manager. 
The Container Manager creates the blocks on the selected data nodes to store the files. 

 

 

 

 

Multi-platform Docker images for Ozone and its dependencies 

BRAINE EMDCs consist of nodes with different CPU architectures and a solution is 
required that can seamlessly integrate and manage all data nodes. Specifically, the EMDC 
consists of both ARM and x86 AMD nodes. Apache Ozone binaries available, as of the 
version 1.2.1, were built for AMD nodes, hence are insufficient for seamlessly integrating 
heterogeneous architectures, such that they can be accessed by different workloads 
dynamically and transparently, especially as the workloads move from one node to 
another. 

This limitation comes from the container runtime interface, where a standard Docker 
image can only execute on the CPU architecture that it was built on. To concurrently 
deploy containers on different CPU architectures, a single image is required that contains 
variants for each architecture. Building such multi-platform images with Docker involves 
following steps: 

• Build an image for each arch (arm64v8 & amd64 in BRAINE EMDCs), either using 
an emulator (which might be limited in functionality) or on native machines with the 
target architecture. 

• Push each image to the image repository with correct architecture tags. 

• Create a Docker manifest file and append each image. Push the multi-platform 
image to the repo. 

Multi-platform images were prepared with these steps for Ozone and all of the Ozone 
dependencies (e.g., CSI drivers and provisioners). When deploying the image as a micro-
service in K8s, the container runtime (Docker in this case) picks the image in manifest with 

Figure 3.10 Ozone Internal Working and Call to Placement Framework 



 

 

the matching CPU architecture. The updated solution can seamlessly run on a multi-
architecture Edge device such as the BRAINE EMDC. 

Finally, to efficiently deploy all Apache Ozone components as containers, Kubernetes 
manifest files were used. The examples provided in Ozone distribution package are 
modified and deployed in the following way: 

• Kubernetes has a volume called HostPath that can mount local file system of a 
node inside containers.  

• HostPath is used to create Persistent Volumes for Ozone data node containers on 
each node.  

• Note that this step is needed because Ozone, when running as a container on the 
local Edge nodes, can only utilize local storage if the storage is mounted as a 
volume in its container. 

• Furthermore, node affinities are created for these Persistent Volumes to ensure 
correct remounting in case of rebooted (or crashed) Ozone components.  

• Statefulsets, DaemonSets, and Services are created and applied for management, 
storage, S3 gateway and CSI components. 

With the updated manifest files, Ozone is deployed as a micro-service and exposes 
multiple APIs to meet application requirements: 

• K8s applications can directly mount Ozone storage as persistent volumes through 
CSI. 

• Other applications can use S3 (AWS), Ofs (Hadoop), O3fs (Ozone) or shell for 
access operations, such as read, write, create, delete, or list. 

An example use of Ozone storage class through Kubernetes is shown below where a 
persistent volume claim is created with Ozone storage class and an application pod can 
simply claim this Ozone persistent volume without any additional changes to the manifest 
file. 

 

Table 3-1 An Example of Ozone storage class through Kubernetes 

Volume Claim Manifest File Pod Manifest File 

apiVersion: v1 

kind: PersistentVolumeClaim 

metadata: 

  name: ozone-csi-test 

spec: 

  storageClassName: ozone 

  accessModes: 

  - ReadWriteOnce 

  resources: 

    requests: 

      storage: 1Gi 

…… 

apiVersion: v1 

spec: 

  template: 

    volumes: 

    -  name: webroot 

       persistentVolumeClaim: 

         claimName: ozone-csi-test 

    containers: 

    -  volumeMounts: 

        -  name: webroot 

            mountPath: /www 

            …… 

…… 



 

 

 

3.3.2. State of the Art (SOTA) 

Edge environments and BRAINE platform have certain requirements for the storage 
system. There are numerous solutions available in the literature and industry. Table 3-2 
presents a qualitative comparison among some of the storage systems based on the key 
requirements.  

Table 3-2 Qualitative comparison of storage systems based on the key requirements 

Features/KPIs HDFS GlusterFS CEPH Ozone 

Lightweight * ** *** **** 

Integration with BRAINE components *** ** * **** 

Multi-arch support (AMD, ARM) *** ** **** * 

Compatible access APIs ** * *** **** 

Location-based data policies - - - ** 

Scalable ** ** *** *** 

Performance (latency) * *** * *** 

Small files storage / Object & block 
storage 

* * *** *** 

Fault tolerance/replication *** *** *** *** 

Native Kubernetes integration - ** **** ** 

Decentralized management ** ** * *** 

 

Based on these requirements, Apache Ozone was chosen as the underlying file system 
and additional features were added, as described in the next section. 

3.3.3. Advancements 

They key advancements for an Edge storage system are based on the features shared in 
Section 3.3.1. An Edge storage system has certain requirements such as:  

• A lightweight file system that can preserve scarce resources at Edge. 

• A distributed system capable of: 
o Managing multiple nodes with heterogeneous architectures (x86/ARM) 
o Seamless data movement or migration across heterogeneous nodes, 

if/when required 

• Support for persistent volumes in a micro-service environment (Kubernetes) 

• Ability to configure location-based policies and enforce regulations e.g., GDPR 

• Multiple access APIs. E.g., to support Hadoop-based access APIs for backward 
compatibility or S3 API access for S3-based applications 

As mentioned in previous sections, some of these features were lacking in the state of the 
art solutions and were hence developed in this task. Specifically,  

• Interaction with an external data placement framework to get a list of optimal or 
best data nodes for data placement. 



 

 

• Seamless integration and management of heterogeneous data nodes under a 
single file system using multi-platform container images. 

• Integration with policy manager and enforcer, capable of handling and managing 
advanced placement, access, privacy and security policies and requirements 

Deployment of the storage system as a micro-service with potential scalability to billions 
of files or objects. 

3.3.4. Performance Evaluations and comparisons 

We analyze the performance of Apache Ozone and its main components (Amazon AWS 
CLI, Amazon S3 Gateway (S3G), Ozone Manager (OM) and Storage Container Manager 
(SCM). We also perform the analysis when data is written with encryption and without 
encryption. The results discuss the CPU usage and instructions executed by different 
Ozone components (AWS CLI, S3G, OM, SCM) while performing the write data.  

We collected the data while writing files of different size (100KB, 500KB, 1MB, 10MB, 
50MB, 100MB and 1GB). 

 

Figure 3.11 C4.3 performance evaluation, data size as a function of instructions 

 



 

 

 

Figure 3.12  C4.3 performance evaluation, data size  as a function of CPU usage 

 

We observe that the while writing with encryption it takes 17% longer time and uses 30% 

more CPU as depicted in the following two figures. 

 

Figure 3.13 C4.3 performance evaluation, data size as a function of duration 

 



 

 

 

Figure 3.14 C4.3 performance evaluation, data size versus CPU usage for S3G 

 

3.4. Data Placement (C4.9) 

Component ID Component Name Development Owner 

C4.9 Data Placement 100% UCC 

GitLab Repository: https://gitlab.com/braine/c49dataplacementframework 

Containerized: Y 

Registered on BRAINE platform image registry: Y 

Deployed as a pod and is functional on BRAINE platform: Y 

Integrated with other platform components: Y – see diagram 

Status: Developed an external data placement framework to optimize the number of 
nodes used while respecting all the constraints of various applications deployed on the 
cluster. Upon receiving a request to store the data, modified Apache Ozone invokes 
the placement API to suggest the list of suitable nodes to be used to store the data.  

3.4.1. Technical description 

This is a constraints-based data placement algorithm that is developed and implemented 
as an external component that is independent of the distributed object store (Apache 
Ozone). This enables the user to invoke the placement algorithm API for any potential 
workload on any available data store. This component is a sub-component of a larger 
system architecture designed to optimize and accelerate workloads in edge computing 
environments. Within this architecture this algorithm forms the basis of a software 
component known as the data placement framework. This component interacts with a 

https://gitlab.com/braine/c49dataplacementframework


 

 

number of other components in the system architecture using APIs to retrieve application 
data constraints and policy information, (forming the data management framework) and 
adapt the algorithm output to impact workload placement on edge nodes. A subset of 
these edge systems architectural components which the data placement algorithm 
interacts with, is shown in in the following figure.  

 

 

Figure 3.15 Data Placement Reference Architecture 

The placement algorithm has two underlying components as:  

• An optimization model that minimizes the number of data nodes while respecting 

all application constraints. The problem is formulated as an Integer Linear Program 

and solved using a Constrained Programming with Satisfiability methods (CP-

SAT) solver. This solution enables the system to enforce the desired constraints 

using the minimum number of nodes. Lesser active nodes lead to lower energy 

consumption. 

• A heuristic algorithm to cope with the real-time evolution of the data store. This 

works as an add-on to the optimization model, after the initial placement, to 

efficiently handle the modifications in the applications and constraints, and to 

minimize data movement operations. 

This framework is implemented using an external REST API, independent of a specific 

data store. This independence allows the user to integrate the API with any data store.  

API requests detail the required action and pass on information on current node state (see 

example API call in the following Listing 1). The API obtains information on application 



 

 

constraints via a data base (key-value store). Using the current state and the constraints, 

the framework creates the list of the nodes for the request.  

  

 

The framework supports both stateless and stateful mode for maintaining the current state 

i.e., application allocation of different nodes. In stateless mode the framework expects the 

storage system to maintain the current state of the node allocation and passes it with each 

request. On the other hand, in stateful mode the framework maintains the current 

allocation state itself and updates it after every allocation. Both of the modes come with 

their respective advantages and drawbacks as the stateless mode may be more up-to-

date as it also includes the local decisions regarding data movement made by the storage 

system but while invoking API the storage system has to pass the current state with each 

of the requests and it consumes extra bandwidth. The stateful mode saves the bandwidth 

but may not be up-to-date. 

We changed the part of the data store that selects the list of data nodes. The modified 

Ozone uses the API to obtain the data node list to fulfill the demands of the application. In 

the stateful mode, after creating the list, API updates its records for current allocation to 

have the details of this new request. 

The placement algorithm is implemented in Python. The data placement API framework 

is written in Flask, which is a micro web framework written in Python. An example call to 

the ADD_APPLICATION function of heuristics looks like the pseudo-code fragment in 

Listing 1. 

The API also supports the other three operations i.e. Remove_Application, 

Add_Constraint and Remove_Constraint. The API supports both GET and POST HTTP 

methods. The POST method handles the stateless mode and expects the current state of 

the nodes along with the application name and operation to be performed. The GET 

method handles the stateful mode and expects only application name and operation to be 

performed. The response to each API call is an updated node state, similar to the one 

shown in Listing 1. 



 

 

 

3.4.2. State of the Art (SOTA) 

This subsection covers the state of the art work from the literature about two topics 
(optimization in data placement and data placement using sensitivity) as: 

Data Placement Optimization 

There are numerous works on optimization in data stores. However, we observe that these 
works are not focused on the constraint-based data placement problem as considered in 
this work.  

Long et al. presets a multi-objective optimized replication management policy for cloud 
storage clusters [30]. This is offline strategy on five objectives, considering the factors 
affecting replication including mean file unavailability, mean service time, load variance, 
energy consumption and mean access latency. However, this work does not consider 
constraints during optimization. 

To reduce the computation delay and response time of the tasks, Li et al. presents a 
solution that jointly performs optimization at two levels [31]. First on placement of data 
blocks and secondly on the scheduling of tasks in edge computing. This work also does 
not consider the constraints during the placement of data blocks. 

Chikhaoui et al. presents a multi-objective data placement strategy for Storage-as-a-
Service in a federated cloud [32]. They consider the cost of the storage, migration and 
latency during the data placement. This work considers the constraints related to the 
capacity and performance local and external storage. This work does not consider the 
privacy, architectural and location related constraints. 

Data Storage Frameworks Targeting Sensitivity 

Padmanabhan and Mukesh have presented a Sensitivity-aware data placement strategy 
for Hadoop, named HadoopSec [33]. This framework uses a machine learning based 
approach for secure data placement and it uses the sensitivity information associated with 
the file to be stored to perform the file allocation in Hadoop. It was suggested that 
companies are concerned with building a single large cluster that contains the data of 
multiple projects. The possible reason of such concerns are the security vulnerability and 
privacy invasion by malicious attackers and internal users. This framework works on input 
data defined by the client including 1) affinity levels between different groups storing data 
inside this Hadoop cluster, and 2) the sensitivity levels of the file information to be stored. 
The framework also uses a rack awareness script that utilizes the available information to 
find the affinity levels of data nodes. It was concluded that the HadoopSec framework 
adds overhead to Hadoop but as a trade-off it protects sensitive information.  

HadoopSec 2.0 is an extension of HadoopSec [34]. It uses the prescriptive analytic 
algorithm to compute the sensitivity levels of the input file based on metadata and the 
content of the file if it is not provided by the client.  It uses a prescriptive, adaptive, and 
intelligent system to identify patterns in the input data and group those with similar security 
concerns. It uses the Doc2Vec algorithm to convert the representation of each file to be 
stored into a vector for further quantitative analysis. The HadoopSec and HadoopSec 2.0 
uses data sensitivity-based constraints. In contrast, the proposed work deals with a variety 
of constraints from real life applications on the data sharing, data node location, disk space 
on node and disk space demand of applications and the node's architectural specification. 
The proposed data placement framework is based on integer programming. 

 



 

 

3.4.3. Advancements 

The proposed data placement framework deals with a variety of constraints from real life 
applications on the data sharing, data node location, disk space on node and disk space 
demand of applications and the node's architectural specification. The proposed data 
placement framework is based on integer programming. 

3.4.4. Performance Evaluations and comparisons 

A paper is under review in an international conference. As a general observation, we can 
see that heuristic algorithm (named as CATER in results) and optimization model (named 
as optim in results) both manage to respect all of the application constraints throughout 
the experiments, and that they do so while using fewer storage nodes than Ozone default. 
Dynamic heuristic algorithm outperforms optimization model in regards to algorithm 
execution time, but also more significantly, sees a substantial reduction in the number of 
data movements, where applications must be moved between data nodes in order to 
ensure that constraints remain satisfied. 

 

 

Figure 3.16 Performance Evaluation of the Data Placement Component 

Simulation results averaged over multiple runs. Unlike Ozone default, CATER and Optimal 
satisfy all application requirements. In comparison to Optimal, CATER uses more nodes 
but improves computation time and application movement. 

From the results we conclude that heuristic algorithm is an attractive choice when seeking 
to respect application constraints, even when the set of applications and constraints is 
highly dynamic. Using the optimal approach results in a substantially higher number of 
movements which is detrimental to the operation of an Edge storage system and if not 
handled carefully can lead to delays for applications in accessing their data. Over the 
experiment lifetime, optimization model occupies just 1.6 fewer storage nodes compared 
to heuristic algorithm, thus reinforcing the clear benefit of heuristic algorithm as an efficient 
solution for constraint-based edge storage. 

 



 

 

Table 3-3 CATER vs. Optimal Performance in real deployment on Apache Ozone. In 
comparison to Optimal, CATER yields better response time and consumes less CPU. 

 

Table 3-4 CATER vs. Optimal API Response Time per application added. Optimal takes 
longer to respond as more applications are added into the system. 

 

3.5. Motif Discovery Tool (C4.11) 

Component ID Component Name Development Owner 

C4.11 Motif Discovery Tool 100 % FS 

GitLab Repository: https://gitlab.com/braine/wp4-mod-discovery-module-fs 

Containerized: Y 

Registered on BRAINE platform image registry: Y 

Deployed as a pod and is functional on BRAINE platform: Y 

Integrated with other platform components: Y – with MOD Learning Module 
(WP4.2) and MOD core module with GUI and InfluxDB and MongoDB databases. 

Status:  

The Motif Discovery Module of Motif Discovery Tool (MOD) enables the discovery of all 
repetitive patterns of any size in any time-series data. The time-series data from the 
perspective of BRAINE are sensory data from machines and devices on the shop floor. 
The discovered patterns represent unique operations of the machine.  

MOD is divided into several containerized modules, which can be deployed individually 
on different host machines. Within WP4, the Discovery module and the Detection 
module are being developed and implemented. 

Components were tested on CNIT Braine Testbed. These components are integrated 
in the UC3 with the Learning Module of Motif Discovery Tool (WP3). 

3.5.1. Technical description 

Motif Discovery module 

The Motif Discovery module enables the discovery of all repetitive patterns of any size in 
any time-series data. The time-series data from the perspective of BRAINE are sensory 
data from machines and devices on the shop floor. The discovered patterns represent the 
unique operations of the machine. 

https://gitlab.com/braine/wp4-mod-discovery-module-fs


 

 

The Motif Discovery module is based on the PyTorch tensor engine for fast processing of 
batched data. It utilizes a proprietary API for front-end communication and batched-run 
specification. When the run is specified and started, the process pipeline described in 
Figure 3.17 is started. 

 

 

Figure 3.17 Discovery module data processing pipeline 

 

The module connects to InfluxDB to download the batch of the raw time series data. The 
time series is processed, and the results are stored in the MongoDB as a priory structured 
result that can be then post-processed to connect automatic IDs of motifs with the human-
readable operation tags. This post-processing is done using the MOD core GUI. The 
primary programming language used is Python. 

Detection Module 

The Detection module of the MOD application uses state-of-the-art machine learning 
models to detect the current operational state of the machine. This module uses online 
time-series data as an input and returns the current operation of a device. Additionally, 
the Detection module checks the incoming time-series data for deviations from its typical 
behaviour. When a deviation occurs, an alarm is set on, and subscribers are notified. The 
design of the data processing pipeline is depicted in Figure 3.18. 

 

Figure 3.18 Motif Discovery- Detection module pipeline 



 

 

This module builds on vectorized model likelihood evaluation of the streamed data. This 
approach allows for a better flexibility in the modeled patterns, which results in better 
detection performance. This comes at a price of higher computational complexity, but this 
is covered by increased processing power of the BRAINE HW platform developed in WP2. 
The detection module supports two types of stream adapters, that is the Open Platform 
Communications Unified Architecture (OPC UA) standard and Message Queuing 
Telemetry Transport (MQTT) communication. The programming language is Python, 
utilizing the PyTorch framework. 

Digital Twin 

The Digital Twin module runs in a cloud platform. It utilized an MQTT broker that is 
accessible from both the BRAINE edge and the cloud. It subscribes for the asynchronous 
events presented from the Detection Module and keeps one event-log for each monitored 
machine. The Digital Twin runs a probabilistic model of event sequences observed in the 
events stream and is capable to provide the probabilistic assessment of the current state 
of the monitored machines fleet. This assessment is presented to the user working on the 
cloud. The key is the compression ratio provided by a high coverage of data by discovered 
motifs. The events log can be utilized for data reconstruction on the side of the cloud. 

3.5.2. State of the Art (SOTA) 

The current market offers either toolsets for developers to bring this young topic of time 
series motif discovery for testing, or only a very basic manual system for hand-picking 
motif candidates from raw time series. An example is a commercial product Trendalyze. 
The Trendalyze application provides tools for an assisted selection of motif candidates 
which are then searched for in the raw data. Such an approach does not automate the 
discovery step and relies completely on the luck and knowledge of the user of the 
application. MOD on the other hand focuses on stepping one level higher and automates 
this motif-candidate generation step. 

An example of the development frameworks that focuses on motif discovery is, e.g., 
STUMPY framework, which provides state of the art methods such as the Matrix Profile, 
which needs to be provided with considerable number of tuning parameters to successfully 
discover motifs in data. Our MOD Motif Discovery module offloads this responsibility from 
the user and leaves only a minimal number of parameters to tune, which are 
comprehensive for the user. 

For pattern detection, state of the art solutions for analysis of data-streams are, e.g., 
BitSwan platform. BitSwan provides number of data connectors from variable sources, but 
builds primarily on pattern similarity measures. MOD Detection module utilized ML models 
with higher modeling capabilities and implicit model likelihood support. 

References: 

Time Series Intelligence and AI 3.0, whitepaper, https://trendalyze.com/wp-
content/uploads/2019/12/Trendalyze-Introduction.pdf 

Scientific Approach for Visual Motif Discovery, whitepaper, https://trendalyze.com/wp-
content/uploads/2019/02/Scientific-Approach-of-Visual-Motif-Discovery.pdf 

STUMPY framework, Github repository, https://github.com/TDAmeritrade/stumpy 

BitSwan platform, product webpage, https://libertyaces.com/solutions/industry.html 

[35] 

https://trendalyze.com/wp-content/uploads/2019/12/Trendalyze-Introduction.pdf
https://trendalyze.com/wp-content/uploads/2019/12/Trendalyze-Introduction.pdf
https://trendalyze.com/wp-content/uploads/2019/02/Scientific-Approach-of-Visual-Motif-Discovery.pdf
https://trendalyze.com/wp-content/uploads/2019/02/Scientific-Approach-of-Visual-Motif-Discovery.pdf
https://github.com/TDAmeritrade/stumpy
https://libertyaces.com/solutions/industry.html


 

 

3.5.3. Advancements 

The MOD Motif Discovery module specializes in discovering of motifs in data. This is a 
fundamental step in pattern detection and currently, this step is offered in a form of a 
customer service. The MOD application offers detection-patterns preparation as a feature 
in the hands of the end user. This is a novelty for the current market, as current commercial 
solutions do not provide such a feature. 

3.5.4. Performance Evaluations and comparisons 

One of the main objectives of this work package within the BRAINE project is data privacy. 
The owners of the data need to provide the Discovery module access to their data. This 
is achieved by access authorization using a database. Another objective was an efficient 
processing of data to save bandwidth usage during production deployment of the detection 
module. The Motif Discovery is a fundamental step for this objective as it produces the 
compression dictionary used on the compression and de-compression side of the 
communication. 

We conducted functional tests of the motif discovery phase. The tests were conducted on 
benchmark datasets containing variable ratios of motifs. Results are listed in Table 3-5. 
Our algorithm discovers motifs of the closest motifs ratio to the expectations when 
compared to the Matrix Profile algorithm of the STUMPY developer framework. 

 

Table 3-5 Discovery coverage comparison of MOD and SotA 

Dataset nametag Ground-truth 

coverage 

MOD coverage Matrix Profile 
coverage 

ECG 0.97 0.98 0.757 

GAP 0.95 0.95 0.153 

Robot 0.373 0.387 0.828 

 

All tests were conducted on the CNIT Testbed BRAINE (described in deliverable D5.5) 
cluster with emulated cluster nodes as described in D5.5. Further testing and evaluation 
will be completed in WP5 in the UC3 deliverable. 

3.6. AI platform profiling engine (C4.13) 

Component ID Component Name Development Owner 

C4.13 AI platform profiling engine 85% NEC 

GitLab Repository:  No Gitlab repo is provided, since it is a subcomponent integrated 
into an NEC proprietary solution. 

Containerized: Y 

Registered on BRAINE platform image registry: N 

Deployed as a pod and is functional on BRAINE platform: N 

Integrated with other platform components: Y – UC2 video analysis application 



 

 

Status: The tool is integrated into applications by leveraging direct import in high-level 
domain-specific machine learning frameworks, such as PyTorch and TensorFlow. 
Therefore it can be shipped jointly with the application deployment units. 

3.6.1. Technical description 

The execution of deep neural networks requires performing a large number of 
mathematical operations in a sequence of neural network’s layers. Each of the layers has 
different computation profiles and its operations are generally defined independently from 
those of other layers. Nonetheless, the combination of layers in a sequential structure 
affects the actual observed execution profile and the overall runtime performance. This is 
the case since each layer might imply a specific set of data movements, intermediate 
results and require specific hardware subsystems. As such, the actual runtime 
performance of a deep neural network, even in the cases of a simpler static execution of 
a fixed set of layers, is hard to predict without analyzing the details of the involved 
computations. We developed a profiler to assess the execution performance of deep 
neural networks taking into account the computation graph deriving from the static 
analysis of the neural network layers (or by tracing execution of the neural network 
algorithm when in presence of dynamic runtime structures). 

Our tool builds an acyclic computation graph of the neural networks, tracking all the data 
transformations (including input and output shapes). The system then maps the 
computation graph to the corresponding mathematical operators, which are provided by 
backend libraries (for example, cuDNN for execution on NVIDIA GPUs). The backend 
mapping allows the system to assess a potential execution schedule on the target device, 
thereby enabling it to predict the sequence of computations that will be actually performed. 
In this process, the profiler is also capable to estimate potential backend optimizations, 
such as operator fusion.  

With this information, the profiler performs a best guess about the execution performance, 
taking into account a best-effort cost model for each combination operation-backend. The 
cost model can be updated over time with data collected from actual runtime executions. 

3.6.2. State of the Art (SOTA) 

The current state-of-the-art in profilers for Deep Neural Networks are mostly based on 
black box approaches: an executor runs the neural network on the target hardware and 
for a given input, and measures the runtime [26]. The measurement is then scaled to 
larger/different inputs. This current approach works well for a number of simpler static 
feedforward networks, but shows limitations when the actual computation depends on the 
characteristics of the input being processed, and when the type of target hardware cannot 
be established a priori. In this context the construction of a computation graph can enable 
deeper analysis and accurate static evaluation of different behaviors, including taking into 
account learned hardware cost models.  

3.6.3. Advancements 

We integrated the profiling tool into a compiler toolchain for neural networks, in order to 
generate, at deployment time, an implementation for a deep neural network that best 
suites the target executor. That is, our profiler can guide a code synthesis process within 
the compiler. This combination of profiler and compiler is especially effective since the 
compilation toolchain needs to build similar data structures create execution schedules. 
The profiler adds the ability to attach performance forecasts to the different schedules, 
before there are even generated or tested on the target hardware. 



 

 

3.6.4. Performance Evaluations and comparisons 

The evaluation of our profiler in isolation is challenging since it is part of a larger compiler 

toolchain, however, we can extract a relevant performance metric: execution time for 

common neural network architectures (e.g., ResNet, MobileNet, etc). We perform the 

evaluation by considering the profiling on unseen hardware and compare that to APACHE 

TVM [3], currently employed in the Amazon SageMaker products for the generation of 

efficient neural network executors. In all the tested cases our profiler could provide a 

verdict in few seconds, and in any case under a minute. TVM required instead several 

hours for its evaluation, since it requires to perform several execution tests on the target 

hardware before building a consistent performance model. 

3.7. vRAN with adjustments (C4.12) 

Component ID Component Name Development Owner 

C4.12 vRAN with adjustments 80% ISW 

GitLab Repository:   https://gitlab.com/braine/wp4-vranwithadjustment-isw  

Containerized: Yes 

Registered on BRAINE platform image registry: No 

Deployed as a pod and is functional on BRAINE platform: Yes 

Integrated with other platform components: Y – Telemetry system and cognitive 
framework (in progress) 

Status: Under testing and integration with the BRAINE platform 

3.7.1. Technical description 

The components of C4.12 encompass the 5G vRAN (containerized 5G SW) equipped with 
the scaling mechanism. The mechanism is there to perform offloading of the current vRAN 
instance component to another EMDC. In here we assume that the offloading (handling 
user data at scale) serves for the purpose of handling more users than would be possible 
to serve with just single EMDC (and thus the vertical scaling in place). Figure 3.19 shows 
a conceptual diagram of the vRAN data handling framework.  

https://gitlab.com/braine/wp4-vranwithadjustment-isw


 

 

 

Figure 3.19 Conceptual diagram of the vRAN data handling framework 

 

Figure 3.20 shows the proposed system model of workload prediction. At the first step, 
the metrics which will be used for the prediction algorithm are collected from the 5G Open 
RAN radio stack gNB network function and they are delivered with internal EMDC 
messaging to the Resource Manager (RM) entity.  A predictive technique is defined as a 
statistical model that can be applied to known data of a given phenomenon to estimate 
future metric evolution.  

 

Figure 3.20 System model for workload prediction 



 

 

 

In this work, the RM utilizes this data to feed arbitrary prediction techniques based on 
several ML algorithms such as ARIMA [20], LSTM [21], and N-BEATS [22], with proper 
inputs that allow characterization of the virtualized gNB operation regarding its demand 
for computing resources of the EMDC. 

3.7.2. State of the Art (SOTA) 

The number of edge devices increases every day, with their capabilities continuously 
evolving. In a typical edge computing paradigm, multiple edge servers are placed close to 
the end users to support quick computation and required bandwidth. However, the 
escalated devices will introduce several challenges of resource management and 
elasticity towards vRAN in the EMDC. The accurate prediction of the future workload such 
as central processing unit (CPU) consumption is critical to the efficiency of vRAN resource 
management. Due to resource constraints of the edge servers, precisely predicting the 
workload of various edge servers can be of great importance in proficiently utilizing the 
EMDCs. The role of combined compute and radio resource scaling in case of virtualized 
5G networks deployments is essential as it allows to perform the paradigm shift from a 
network provisioning based on busy hours. 

In [3], the Open RAN (O-RAN) case is presented where the telemetry is obligatorily 
collected to support AI/ML model training. The 3GPP network data analytics function 
(NWDAF) framework collection is considered, where the telemetry data collector includes 
a monitoring server (e.g. Prometheus) for collecting performance measurement data from 
the NWDAF, the virtualized infrastructure and the transport network elements. Here the 
5G dataset is utilized in order to train AI/ML models to predict cell-load as well as energy 
efficiency. Requirements for network analytics in 5G are provided in addition to application 
and slice analytics, e.g., interference handling, channel quality prediction, dynamic radio 
topology control, multi-slice radio resource management [4]. Author in [5] presented a 
proof-of-concept design and implementation for blockchain-based slice orchestration at 
the Network Edge aligned with European Telecommunications Standards Institute (ETSI) 
Network Function Virtualization (NFV) standard. Such scaling and migration features are 
identified in the 3GPP specs defining slicing mechanism (3GPP SA5 with TS28.531, 
TS28.526; ETSI GS ZSM with ZSM003). Comprehensive overview of common online data 
analytics frameworks is presented in [6].  

Several artificial intelligence/machine learning (AI/ML) based predictive methodologies 
and schemes are proposed to estimate the future resources demand. Author in [14] 
proposes a containerized edge computing framework for dynamic resource provisioning. 
This framework integrates workload prediction and resource pre-provisioning to provide 
high utilization of edge resources. Pramanik et al. characterize the computational and 
memory requirements of virtual RANs with regression models to predict better demands 
for resources [15]. They use 4G vRAN test-bed leveraging the non-disaggregated open-
source mobile communication platform and general-purpose processor-based servers. 
The ML based virtualized network functions (VNFs) prediction and placement in the 
network edge is investigated in [16] where authors propose a neural-network model to 
assist in proactive auto-scaling by predicting the number of VNF instances required as a 
function of the network traffic. This research also investigates the placement of these VNF 
instances at the edge nodes with a primary objective of minimizing end-to-end latency 
from all users to their respective VNFs. Authors from Microsoft introduce a user space 
deadline scheduling framework Concordia [17] for the vRAN on Linux. It builds prediction 
models using quantile decision trees to predict the worst case execution times of vRAN 
signal processing tasks. These predictions are used to calculate and proactively reserve 
the least number of cores required to perform the vRAN pool operation in the next slot 
(e.g., 1ms), releasing the rest of the cores to the operating system (OS) for other tasks.  



 

 

There have been several studies in the literature reporting data collection frameworks. 
Authors in [7] refer to the usage of Prometheus and Netdata for metrics collection of VNF 
to support slice monitoring. Moreover, multiple telemetry sensors are defined in various 
levels of the stack of 5G infrastructure. Prometheus provides an easily machine-readable 
format. In [8] authors consider that telemetry systems should be able to instrument and 
monitor the different devices composing the overall infrastructure in order to deal with 
highly distributed 5G small cells. They also point that such systems should be able to 
generate aggregated and derived metrics, as well as follow the distributed approach. They 
selected Prometheus as the most suitable platform for a two-tier virtualization architecture. 
It is highly scalable due to its hierarchical federation capabilities. A similar environment 
with Kubernetes and Prometheus is considered in work [9] which uses it to monitor 4G 
networks based on open air interface (OAI). On the other hand, the solution inspired by 
the Barometer framework uses InfluxDB and Grafana is considered in [10], for holistic 
slice management. 5G network monitoring with the usage of P4 switches is presented in 
the work of authors in [11]. Especially the user plane function offloading approach in 
EMDC switch is considered.  Authors in [12] describe the architecture of a monitoring 
system which is able to be deployed on top of network function virtualization (NFV) 
Objects, such as Platform as a Service (PaaS). The need for a distributed big data 
repository to handle telemetry data is highlighted by authors in [13]. 

However, none of the above mentioned research indicates the workload prediction of 
vRAN in the EMDC type platform in addition to the data collection frameworks. 
Moreover, the AI/ML based approaches of data prediction with the real testbed is yet 
missing in the vRAN scenarios for the edge micro data centers.  

3.7.3. Advancements 

In the alignment of vRAN optimization, several research and development works have 
been performed from both industry and academia. It should be noted that scaling 
functionalities of vRAN includes the workload prediction and placement in most of the 
cases. Our main focus aims to handle data effectively at scale which maps to addressing 
performance requirements of any BRAINE workload, and especially the secure 5G 
wireless communication infrastructure. The BRAINE aims to boost the development of the 
edge networks with multi-processor accelerators on board. Network slicing which 
considers the virtualized logical networks on the same network platform is thus required 
to get the full benefits of huge data management in EMDC. At the same time, a complete 
data collection framework is needed to collect and measure the data for a target variable 
to evaluate the system performances. It is important to note that data handling and 
collection mentioned in this work is directly aligned with 3GPP [1] and ETSI [2] standards 
defining the slice management. However none of the standards address the particular 
mechanisms and algorithms (e.g. auto-scaling, self-healing or migration) to assure proper 
realization of slice management in micro-data center based networks with 5G 
disaggregated virtual networks at the edge.  

 From the perspective of vRAN optimization, we propose a novel system model of the 
workload prediction and CPU usage forecasting mechanism in an EMDC architecture. We 
present the data collection framework for such deployment in a local test bed considering 
AI/ML based decision models applied in realistic settings. The considered EMDC 
architecture can host the monolithic VNFs of 4G/5G radio protocol stack in a 
disaggregated manner. In addition, several ML algorithms for CPU usage prediction is 
proposed in EMDC architecture based on Long Short-Term Memory Neural Network 
(LSTM), Auto Regressive Integrated Moving Average (ARIMA), and interpretable time 
series forecasting (N-BEATS) in combination with collecting the data from the real testbed. 

The approaches to enhance handling data at scale, with the focus on capabilities 

attributed to vRAN and its mechanisms, were described in the D4.2 deliverable (Section 



 

 

3.3). There we have introduced the “Extended approaches”, which utilize the knowledge 

of metadata describing the use-case context of execution in order to provide indicative 

cues for the resource allocation in 5G workload SW. In BRAINE use-cases rely on various 

workloads deployed inside the EMDC HW to support the user-applications (e.g. eHealth, 

industrial plant, chip design fabric, surveillance of the city). All the use-cases are similar in 

the fact that they produce and consume information. What is different is among others, 

the amount of traffic exchanged (traffic pattern), different criticality of this traffic (class of 

service or QCI) and level of flexibility to have some traffic adjusted or complemented. An 

interesting example of providing more options is the UC-3 (industry 4.0).  

3.7.3.1. The use of context for interplay between use-case and 
5G infrastructure of EMDC 

In case of the UC3 the deployment of 5G vRAN in EMDC would address mostly the indoor 
facility (i.e. factory, warehouse). Here the important parameters determining the 5G 
infrastructure potential for contextual adjustments are the: a) size of the facility, b) required 
number of antennas (radio units), c) number of end-terminals, their mobility patterns, role 
of the data flows, d) criticality of the information delivery and so on. In the case of the UC3, 
we are dealing with mobile robots that are moving some items between locations. The 
robots themselves perform a set of well identified routines, but the way they operate is 
executed according to some states in which they are operating. This way it is possible to 
i) recognize the location of the robot, ii) identify the current target/objective, iii) understand 
the next steps based on some contextual information.  

Assuming the information about the current snapshot of parameters describing the robots, 
its actual target, an environment and logical state it is in – it is possible to encode such 
variables into “context” and regularly deliver it to the 5G infrastructure decision makers, 
using BRAINE telemetry to the centralized repository. This way 5G vRAN algorithms that 
manage infrastructure resources, can benefit from accessing the contextual data of a use-
case (e.g. UC3) by carefully configuring the subscription of suitable metadata. The means 
to combining the different domains can be follow e.g. ORAN xApps or ETSI MEC Apps to 
blend the resource management with the contextual status. The following information is 
available considering the UC3 and it could be reached via telemetry mechanisms.  



 

 

 

Figure 3.21 Example of robot data which could be passed to the vRAN component for 
optimization 

In figure 3.21 it can be observed that location, speed, connectivity as well as states related 
to docking (related to conveying goods) and charging (loading batteries) are available. 
When we combine it with the situational awareness on the map of a factory/warehouse 
we get complete picture of activities currently performed by each robot separately as well 
as global picture. The latter is related to the overall production/warehousing process status 
and efficiency.  



 

 

 

Figure 3.22 Map of factory floor 

In figure 3.22 above it can be seen that the white area represents that part of factory that 
has already been successfully explored by single robot or multiple ones. The robot first 
scans an area multiple times to find out where are exactly the walls and obstacles (the 
grey area on the map). One can then send robots to an arbitrary position on the map (but 
only to the white area), and the robot will get there with certain accuracy. If position/target 
needs to be more accurate than that, the robot can be taught the exact position (orange 
points).  

Knowledge of shared space outline allows robots to move more flexibly based on the 
(production, storage) targets specified for each of them. The production line is the black 
box in the schematic. The docking stations are marked in blue, charging places in red, 
and pre-docking positions, in which the robot waits for approval from safety to enter the 
area, in green. They have different purposes. The docking station is for loading and 
unloading purposes only. The charging station is equipped with chargers and is for 
charging only.  

3.7.4. Performance Evaluations and comparisons 

Figure 3.23 illustrates a data collection framework which demonstrates practical 
deployment of a 5G vRAN as the Kubernetes workload in the edge server represented by 
two legacy computers (desktop PCs). The mobile network is a full-featured 5G packaged 
into SW components according to the functional splits defined by 3GPP. Besides the 
general purpose computers the only specialized HW is the radio head device represented 
by the USRP node. All the yellow boxes in Figure 3.23, except for RU, can be subject to 
placement in various partitions of the access and metro network, assuming the required 
throughput/latency requirements are met.  



 

 

 

Figure 3.23 Data Collection Framework for vRAN 

In order to provide access to a comprehensive set of metrics of a 5G vRAN a framework 
based on Prometheus exporters, Grafana for visualization and InfluxDB are utilized. With 
such instrumentation it is possible to properly profile resource consumption of both (i) 
computing and (ii) radio metrics. Based on such profiling various AI/ML models can be 
trained in order to be able to predict resource demand (e.g. CPU consumption, memory, 
throughput, etc.) based on the observed user traffic evolution in time. The collected 
metrics are 5G vRAN performance measurements on uplink and downlink and resources 
consumption observation. 

We use a practical deployment framework which demonstrates 5G vRAN components 
deployed as the Kubernetes pods in the EMDC. In order to provide access to a 
comprehensive set of metrics of 5G vRAN a framework based on Prometheus exporters, 
Grafana for visualization and InfluxDB are utilized. With such instrumentation it is possible 
to accurately profile resource consumption of both (i) computing and (ii) radio metrics. 
Based on such profiling various AI/ML models (e.g., ARIMA, LSTM, and N-BEATS) can 
be trained in order to be able to predict resource demand.  

For this experiment, we used a 5G network deployed on the EMDC which consists of 
servers on different network configurations. In the EMDC, the centralized unit (CU) and 
distributed unit (DU) can be deployed as VNF on one server with Kubernetes cluster and 
radio unit (RU) connected as USRP (i.e. RF front end) on another server, where a physical 
layer is deployed as Docker Swarm. We considered a commercial UE to establish 
connectivity for data sending and receiving.  

We evaluate the performance of the proposed ML-based workload prediction algorithms 
by collecting the data from the experimental setup. All analytical results were performed 
by using the PyTorch library in Python [23] where ML-based models are trained and tested 
based on the data collected from the real-time test scenarios running in the testbed. 
Performance of the LSTM model is quite lower than the ARIMA model with transfer 
learning but the LSTM model has advantage in application and deployment on the EMDC 
and it does not require additional computation resources in comparison with transfer 
learning with ARIMA. Workload prediction of CPU usage by N-BEATS model is the worst 
among the three models.  

Mean absolute error (MAE) and mean absolute percentage error (MAPE) are referred to 
as a loss function for defining error by the model evaluation in order to measure the 
accuracy of the specified models. The following experimental values are recorded for MAE 
(5.09, 6.40, and 14.21) and MAPE (0.14, 0.20, and 0.38) in case of ARIMA, LSTM, and 
N-BEATS, respectively.   

Two research works have been prepared from these contributions addressing the data 
handling mechanisms and data collection frameworks in the EMDC structure, which is 
accepted in [18] as well as presenting the justification of the workload prediction of 
virtualized RAN in the EMDC which is submitted in [19].  



 

 

4. Conclusion 

This document provides the status of 7 of the key software components developed under 

WP4 for development and integration as part of the overall BRAINE platform. Most of the 

development effort has been completed. Some components are still undergoing 

integration and testing with other WPs, more specifically with use-cases in WP5. Partners 

are planning the integration activities with corresponding use-cases.  
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