

BRAINE - Big data Processing and Artificial Intelligence at the

Network Edge

Project Title: BRAINE - Big data Processing and Artificial

Intelligence at the Network Edge

Contract No: 876967 – BRAINE

Instrument: ECSEL Research and Innovation Action

Call: H2020-ECSEL-2019-2-RIA

Start of project: 1 May 2020

Duration: 36 months

Deliverable No: D4.2

Second report on the status of WP4

Due date of deliverable: 31 March 2022

Actual submission date: 12 April 2022

Version: 1.0

2

Project funded by the European Community under the

H2020 Programme for Research and Innovation.

Project ref. number 876967

Project title
BRAINE - Big data Processing and Artificial Intelligence at

the Network Edge

Deliverable title First report on the status of WP4

Deliverable number D4.2

Deliverable version Version 1.0

Previous version(s) -

Contractual date of
delivery

31 March 2022

Actual date of delivery 12 April 2022

Deliverable filename D4.2 Second report on the status of WP4

Nature of deliverable Report

Dissemination level PU

Number of pages 59

Work package WP4

Task(s) T4.1, T4.2, T4.3, T4.4

3

Partner responsible LUH

Author(s) Javad Chamanara (LUH), Ahmed Khalid (DELL), Sean

Ahearne (DELL), Edgard Marx (ECC), Ilya Vershkov

(NVIDIA), Janina Habrunner (IFX), Philippe Nguyen (SIC)

Editor

Abstract This technical report, delivers the detailed information about

the progresses that have been made in the context of work

package 4 (User-oriented utilization of the edge). The report

covers architectural and technological designs, decisions,

selections, and developments for various aspects of the

work package including, distributed data storage, data

access and privacy control, workflow definition and

execution for managing scalable workloads. It also covers

the advancements regarding the workflow definition

language and authoring tool, its integration with the service

catalogue, and the ontology to describe the cluster concepts.

The report provides implementation details about the

telemetry and monitoring developments with an emphasis on

the monitoring information visualization.

Keywords Edge computing, resource utilization, distributed file system,

privacy and security aware data access, workflow definition,

workflow execution, telemetry, monitoring, visualization.

Copyright

© Copyright 2020 BRAINE Consortium

4

This document may not be copied, reproduced, or modified in whole or in part for any

purpose without written permission from the BRAINE Consortium. In addition to such

written permission to copy, reproduce, or modify this document in whole or part, an

acknowledgement of the authors of the document and all applicable portions of the

copyright notice must be clearly referenced.

All rights reserved.

5

Deliverable history

Version Date Reason Revised by

00 24.02.2021 Table of Contents - version 00 Javad Chamanara

01 10.03.2021 Contributions, all partners Javad Chamanara

1.0 11.04.2022
Executive summary and Final

Review

Javad Chamanara, F.

Cugini

6

List of abbreviations and Acronyms

Abbreviation Meaning

5G 5th Generation

AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

CU Centralized Unit

DSP Digital Signal Processors

DU Distributed Unit

ECG ElectroCardioGram

EEG ElectroEncephaloGram

EMDC Edge Mobile Data Center

EPC Evolved Packet Core

ERP Enterprise Resource Planning

EU European Union

FPGA Field Programmable Gate Arrays

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

HRC Human-Robot Collaboration

iDT intelligent Digital Twin

ICT Information and Communication Technologies

IP Internet Protocol

IoMT Internet of Medical Things

IoT Internet of Things

IT Information Technology

KPI Key Performance Indicator

7

MES Manufacturing Execution Systems

MOD MOtif Discovery

PoC Proof of Concept

QSD Qualified Synthetic Data

RAN Radio Access Network

TBC To Be Confirmed

TBD To Be Defined

TCP Transmission Control Protocol

TLS Transport Layer Security

TFLOPS Tera Floating Point Operations Per Second

TSN Time-Sensitive Networking

UE User Equipment

URI Uniform Resource Identifier

URLCC Ultra-Reliable Low-Latency Communication

USRP Universal Software Radio Peripheral

8

Table of Contents

1. Executive summary 11

2. Secure data management framework for AI at the Edge 12

2.1. Background 12

2.2. System Design 13

2.2.1. Data lifecycle management 13

2.2.2. Active Data Product (ADP) 14

2.2.3. Data Storage 16

2.3. Implementation 17

2.3.1. Apache Ozone 17

2.3.2. Interfaces for accessing data 18

2.3.3. Security features 18

2.3.4. Preventing cache attacks and micro-architecture induced vulnerabilities 19

Semantic Web 20

3. Efficiently handling data at the edge at scale 21

3.1. Secure and Optimized Data Placement 21

3.2. Efficient analysis of the time series and detection of motifs 21

3.2.1. Motif Discovery Module 22

3.2.2. Detection Module 23

3.2.3. Digital Twin Module 24

3.3. Virtualized RAN and use-cases cooperation 24

3.3.1. Baseline approach for data handling at scale with vRAN 25

3.3.2. Extended approach for data handling at scale with vRAN 28

3.3.3. Impact on design and implementation 30

3.3.3.1. Impact on design of BRAINE architecture 31

3.3.3.2. Impact on implementation of BRAINE releases 33

4. Workflow definition language and authoring tool 38

9

5. Measurements and monitoring 44

5.1. Flow based network telemetry framework 44

5.1.1. Flow telemetry Agent (C.4.14) 45

5.1.2. Flow P4 program (C4.14.1) 45

5.1.3. Telemetry Monitor and exporter (C4.14.2) 46

5.2. Monitoring and Dashboarding 46

6. Components 48

6.1. Data lifecycle manager (C4.1) 48

6.2. Policy manager (C4.2) 48

6.3. Global File System (C4.3) 49

6.4. Active Data Product (C4.4) 49

6.5. Catalyzr tool (C4.5) 50

6.6. Authoring tool (C4.6) 51

6.7. Service Orchestrator (C4.7) 51

6.8. Monitoring Dashboard (C4.8) 52

6.9. Data Placement (C4.9) 52

6.10. Healthcare Assisted Living (C4.10) 53

6.11. Motif Discovery Tool (C4.11) 55

6.12. vRAN with adjustments (C4.12) 55

6.13. AI platform profiling engine (C4.13) 56

6.14. Network Telemetry Framework (C4.14) 56

7. Conclusions 59

10

List of Figures

Figure 2.1 Data Lifecycle Manager Architecture showing integration with global

filesystem and policy manager .. 14

Figure 2.2 Interaction model of the ADP and a user (agent) .. 15

Figure 3.1 The overview of the whole MOD tool design ... 22

Figure 3.2 Discovery module data processing pipeline .. 23

Figure 3.3 Detection module for online pattern/motif detection in data processing pipeline

 .. 24

Figure 3.4 Neural Network execution profile extracted by the SOL runtime profiler 36

Figure 4.1 Service Deployment Specification Window ... 38

Figure 4.2 Argo hello-world workflow example. ... 39

Figure 4.3 Service Deployment Specification Window ... 40

Figure 4.4 Deployment Creation Window .. 40

Figure 4.5 Deployment Class .. 41

Figure 4.6 Service Deployment Specification Class... 41

Figure 4.7 Node Info metadata .. 42

Figure 4.8 Deployment class ... 43

Figure 4.9 Log class .. 43

Figure 5.1 An overview of the Flow based network telemetry framework and components

 .. 44

Figure 5.2 P4 source code to define the flow telemetry table ... 45

Figure 5.3 gRPC proto example used in The telemetry monitor & exporter 46

Figure 5.4 An example of the monitoring dashboard showing charts of CPU, Network

Traffic, and Memory .. 47

11

1. Executive summary

This work package aims at developing techniques and tools to enable easy and efficient

access to the resources and services provided by the infrastructure to the end-users. This

cover providing an easy mechanism for specifying workloads, a secure, scalable, and

harmonized data management system that is seamlessly integrated into the infrastructure,

and a set of well-tailored data curation and cleansing mechanisms, as well as simplifying

the development of systems and applications at the edge of the network.

To achieve its objectives, the work package has been divided into four tasks; 1) secure

data management framework for AI at the Edge (started on M03), 2) efficiently handling

data at the edge at scale (started on M07), 3) workflow definition language and authoring

tool (started on M07), and 4) execution measurement and monitoring (started on M12).

The document has correspondingly divided into four sub sections, each detailing the

achieving of their respective tasks.

T4.1 provides the details of the status of the implementation of the data lifecycle

management and the distributed storage system. It also explains how the file system is

integrated with the policy management sub-system and how the distributed file system is

accessible as a single unit. A first revision of the active data product (ADP) is also

presented.

T4.2 Provides the specification and realization of a data placement framework that is able

to place data on nodes based on privacy and security constraints. The partners have done

this by extending the APIs of Apache Ozone in a way that Ozone will call the placement

algorithm during the file access request pipeline. Also, the task had delivered a motif

discovery tool that analyses the time-series to find repeating patterns (motifs) and builds

a dictionary of distinctive motifs shipped to the cloud. In order to integrate vRAN with

BRAINE, use-case requirements and technical specification have been identified and two

approaches have been considered: baseline approach and extended approach. This task,

has designed and is implementing an AI application profiling to explore the optimization

space and ensure optimal hardware utilization.

T4.3 has delivered a workflow definition language based on OWL-S for modelling atomic,

simple, and composite processes. It is integrated with the Kubernetes-compatible open-

source workflow execution framework Argo. The authoring frontend allows for defining

various work items, e.g., services, and deployments and is able to submit them to the

Kubernetes APIS for execution.

In T4.4, P4 based programs for collecting and exporting telemetry records from the

switches have been developed and tested. The metrics are successfully submitted to and

ingested by the central telemetry database. The flow telemetry agent is able to identify

and collect per-flow metrics, which enables higher management modules to decide on

rerouting the traffic or transferring the workload to other nodes to maintain SLAs.

Monitoring and dashboarding are working at the cluster level. They are Dockerized,

Podified, and registered in the cluster-level docker registry. Efforts to make them multi-

tenant as well as applying access control on their data have been recently started.

12

2. Secure data management framework for AI at the Edge

2.1. Background

This task focuses on developing a data storage solution for the BRAINE platform and a

framework for managing BRAINE data throughout its lifecycle. Various issues are

considered when designing the solution including, access policies, storage policies, data

archival, data privacy, data provenance, and data sovereignty.

“D4.1 First report on the status of WP4” provides a detailed background information on

the three key elements of this task, as summarized below:

Storage: The distributed data storage system of BRAINE can store data across multiple

physical nodes or EMDCs forming a cluster of storage units. Distributed storage has

several advantages compared to its centralized counterpart, such as scalability, reliability,

performance, cost, fault tolerance, high availability, and disaster recovery. Apache Ozone

was selected as the filesystem for the BRAINE distributed data storage solution. It is a

relatively new open-source storage system maintained by Apache foundation. Similar to

CephFS, it provides object, block, and file storage on one system and supports Native

K8S integration. It is highly compatible with HDFS, Amazon S3, and Network file systems.

Data lifecycle and Policy Manager: The concept of data lifecycle management stems

from the requirement that the current state of any and all user data contained within the

platform needs to tracked to ensure compliance with any user and/or regulatory data

policies. The underlying principles can be defined as standard policies, and applied to the

data lifecycle monitoring system to ensure that the behavior of both the monitoring system

and user data is compliant with all current data regulations. To monitor the lifecycle of data

means to maintain a log of all actions and events that transpired with that data, from its

point of ingestion into the platform to the point it is archived or deleted. In BRAINE platform

the immutable logs are maintained using blockchain and Apache Ranger is used to

maintain and apply policies to the data processing components.

Data Security and Privacy: Various security and encryption mechanisms are explored to

protect the data and privacy of the platform users. Some of the common security and

privacy threats are unauthorized access, data leaks, side-channel attacks, inference

attacks, linking attacks, user authentication, access control and compromising data

confidentiality or integrity. The storage system is designed to allow incorporation of

mechanisms that protect user data against such attacks.

13

2.2. System Design

2.2.1. Data lifecycle management

The objectives of the data lifecycle manager remain the same as specified in D4.1, which

is the tracking, tagging, and immutable logging of data lifecycle events of user data as it

is used on the BRAINE platform. In order to achieve this, a number of BRANE platform

data management components need to be integrated:

1. The lifecycle management component must take input from the policy manager in

order to determine which data should be monitored, what tags exist and should be

attached to said data, and detect any possible policy violation such as modification

of data from an unauthorized user.

• Through the use of Apache Ozone for the global filesystem, Apache

Ranger can be used as the global data policy manager, as it already has a

native plug-in to connect with Ozone.

• Ranger can act as a simpler server and database to enable users or the

platform to upload data policies (with built-in policy auditing), which can be

retrieved by other platform components to apply or enforce these policies

(e.g. the global filesystem and the lifecycle manager).

2. Input from the global file system is also required in order to determine when a data

lifecycle event has occurred for a piece of data. The architecture of apache Ozone

allows this to be enabled in many different ways through the use of its Recon

server, a global managing and monitoring console for Ozone:

• Tracking of user data events at the block level can be enabled through the

use of the Storage Container Manager database.

• Tracking of data events at the container level via the Recon server’s

container database.

• Tracking of data events at the volume level with the Ozone Manager

database.

• It may be possible to define the level of granularity required in terms of

tracking of certain data via the policy manager.

3. Once the metadata on user data is defined and collected from the global file

system, it is ready to be ingested to an immutable Ledger in order to ensure

verifiable auditability:

• This will be achieved through ingesting the collected events onto a

blockchain.

• IOTA has been chosen in this instance to provide a lightweight

implementation of blockchain technology. Its ability to run as a container

and low resource usage make it suitable for both the Edge environment

and the BRAINE platform.

• Modification of the data being ingested, or modification of the data

contained within a blockchain transaction may be required in order for the

system to operate in an effective manner without excess resource usage.

Figure 2.1 below describes this updated view of the overall integration process for the data

lifecycle manager in the context of D4.1, and the overall platform architecture. It should be

14

noted that the blockchain implementation in this instance is private. This provides privacy

on behalf of the administrator and users of the platform, but requires more active

monitoring in order to ensure effective scalability.

Figure 2.1 Data Lifecycle Manager Architecture showing integration with global filesystem and policy

manager

2.2.2. Active Data Product (ADP)

An active data product is indeed a dataset encapsulated in a secure container that allows

access via a well-defined access point that conforms to the terms of an agreed-upon

contract. A data product is said to be active as it can operate in an external environment.

It is indeed a self-contained, secure executable package that must be run in order to allow

for the utilization of the data it contains. When requested by external agents to access the

data, it will ensure that the request and the response comply with contract terms, usage,

sovereignty regulations, and boundaries defined.

A contract definition language using YAML is under development, by which the data owner

can define the terms and conditions for accessing the data. The contract is then enforced

by the contract controller. Any legitimate access to the data will be recorded in a

15

blockchain for contract term enforcement as well as for auditing and accounting. The ADP

component is a prototype and may not be secure enough for production environments

with high-sensitive data.

Each UC that aims at sharing data with other UCs or external systems/parties may benefit

from this component.

The general user interaction with the ADP is depicted in Figure 2.2 below.

Figure 2.2 Interaction model of the ADP and a user (agent)

The ADP encapsulates a dataset (or an AI/ML model) and a contract that governs the

access and usage terms of the dataset. When an agent requests to access data, it needs

to provide the querying parameters. The access point first validates the request by

checking authentication and authorization policies as well as usage policies and terms as

in the contract. Therefore, if the request violates any usage of the terms, the request will

be decarded and a cost associated with it will be submitted to the blockchain. This is to

mitigate denial of service and data exploitation attacks. Any successful request will also

be written to the blockchain for usage tracking. The access point validates the parameters

against the contract terms. For example, an agent may be prevented from filtering data

based on the gender of people in the dataset, or it can be prevented from requesting data

of people under 18 years old. After parameter validation, the request will be passed to the

execution engine to construct the result set from the dataset/model. The result set will also

be validated against contract terms. For example, the input parameters may not explicitly

16

ask for data about females, but the result may contain such data. If there is a restricting

term in the contract, those records will be dropped from the final response. As both served

and discarded resources are logged in a blockchain via the activity Loggin Module, usage

can be tracked not only by the ADP instance but also by the parties of the contract as well

as third parties. At the moment a prototype of the ADP has been implemented and is under

test. The blockchain is simulated by MongoDB, which will be replaced after the contract

controller reaches stable status. Research and development on securing the whole ADP

against malicious agents and contract parties is ongoing.

2.2.3. Data Storage

The data storage solution in the BRAINE platform has certain key requirements. A

BRAINE EMDC consists of multiple worker nodes each with a certain storage space

available for applications and services. The EMDC may also consist of additional nodes

specifically purposed to provide additional storage space. The nodes may comprise of

different CPU architectures (ARM or AMD).

The goal of the distributed data storage solution is to configure all the available storage

space as a single filesystem, creating a distributed pool of storage resources, such that

they can be accessed by different workloads dynamically. The solution should seamlessly

integrate heterogenous architectures. The solution should also allow configuration of

smart, flexible and efficient data placement strategies, with the capability of dynamically

moving the stored data across worker nodes on-demand, regardless of the type of

underlying CPU architecture.

As the BRAINE platform is based on Kubernetes (K8s), the storage solution must be able

to provide stateful K8s applications with a persistent volume (PV) to store their stateful

data. Finally, the storage solution should: allow for security and encryption protocols to be

incorporated; provide multi-protocol support for enabling access through multiple APIs and

mechanisms and; allow integration of plugins for management of data including auditing,

tracking and policy enforcement of events.

With the above requirements in consideration, various filesystems and object stores were

reviewed and Apache Ozone was selected as the base to build the storage solution on.

Ozone is a scalable, redundant, and distributed object store that aims to provide a resilient

cost‑efficient solution while providing features necessary to function effectively in

containerized environments.

17

The distributed data storage in an EMDC is designed to run a single filesystem based on

Apache Ozone. The Ozone management services including Ozone Manager (OM),

Storage Container Manager (SCM) and Container Storage Interface (CSI) are

containerized and created as Kubernetes (K8s) applications. Features that are required

for BRAINE platform but were lacking in Ozone, were developed and the Ozone source

code as well as deployment was upgraded accordingly. Two key such features are:

Interface for an external placement framework: One of the key components of the

BRAINE platform is C4.9 Data placement framework. This component applies constraints

and smart placement strategies to find the best nodes for placing a certain user data. To

allow interaction with this placement framework, Apache Ozone’s source code was

modified and the relevant classes were updated to include API calls to the placement

framework.

Support for heterogenous CPU architectures: Apache Ozone binaries available, as of

the version 1.2.0, were built for AMD nodes. As the BRAINE platform also consists of ARM

nodes, Ozone binaries and all the dependencies and supporting functions were built for

ARM nodes as well. The updated solution can seamlessly run on a multi-architecture Edge

device such as the BRAINE EMDC.

2.3. Implementation

2.3.1. Apache Ozone

The distributed data storage in an EMDC is designed to run a single filesystem based on

Apache Ozone and the user or system applications that run inside the EMDC use Ozone

storage class if they require persistent volumes. The Ozone components themselves are

also created and managed by Kubernetes orchestrator of the EMDC. “D4.1 First report on

the status of WP4” explains the mechanism of implementing and deploying Ozone in the

BRAINE platform.

Furthermore, as explained above in Section 3.2.2, Apache Ozone was upgraded to

include certain features essential for the BRAINE platform and use-cases.

For interfacing with C4.9 Data placement framework, the Ozone source code was

modified. The data placement framework is built as an external API This API uses the

available information for data placement. It keeps the record of the present state of data

allocation on various data nodes. The API also has the details of the constraints on the

data defined by the application. These constraints may be on node sharing, hardware

18

(Intel, AMD, ARM), selected data nodes, or some specific location, etc. All these details

are stored in config (XML and properties) files.

The modified Ozone requests this API to get the data node list to store the input data.

Based on the available information about this new data request (application, user,

persistent volume, etc.) and the stored information about the current allocation the data

placement API returns the list of data nodes to Ozone. Finally, Ozone uses these nodes

to store the data.

For supporting heterogenous CPU architectures, Ozone docker containers were built on

an ARM node and a multi-tagged docker manifest was prepared. This manifest consists

of both ARM and AMD images within it and when instantiated on a particular worker node,

the container runtime picks the correct image for that CPU architecture. Additional images

related to CSI i.e., CSI node driver registrar and provisioner were also prepared in the

same way with one image tag wrapped around ARM and AMD images. Finally,

Kubernetes manifest files were developed that create K8s objects based on these multi-

tagged images. In addition to the Ozone management components, one data-node

component is instantiated on each worker or storage node that has to become part of the

storage system.

2.3.2. Interfaces for accessing data

Various interfaces available to users or application of the BRAINE platform for accessing

data are detailed in “D4.1 First report on the status of WP4”. These interfaces include,

Container Storage Interface (CSI), S3 Interface, Ofs and O3fs Hadoop Compatible

Interfaces, Command Line Interface, Java API and a Recon Server. All of these interfaces

are still supported for accessing data. Additionally, the CSI interfaces and components are

upgraded to support heterogenous CPU architectures, as explained in Section 3.3.1

above.

2.3.3. Security features

Kerberos authentication

Apache Ozone uses Kerberos authentication to secure the cluster. Today to enable

security in ozone cluster, we need to set the configuration ozone.security.enabled to true

and hadoop.security.authentication to Kerberos in the core-site.xml file. Ozone uses the

concept of tokens along with the Kerberos server to reduce the number pf requests to the

Kerberos server. Once a client is authenticated, Ozone issues delegation tokens and block

19

tokens to the clients. These tokens allow applications to do specified operations against

the cluster, without having to request the Kerberos ticket for each operation. Its

implementation and detailed analyses are still under progress

KMS

Transparent Data Encryption (TDE) allows data on the disks to be encrypted-at-rest and

automatically decrypted during access. For Ozone, we can enable TDE at the key-level

or the bucket-level. TDE is enabled at the bucket-level when a bucket is created. To use

TDE, admin must setup a Key Management Server (KMS) and provide that resource

identifier to Apache Ozone by configuring hdfs-site.xml. The property

hadoop.security.key.provider.path in the hdfs-site.xml file is set to the KMS path. Once

this file is configured for our cluster, then we can create the encryption key and enable

encrypted buckets.

To create an encrypted bucket, the client needs to:

Create a bucket encryption key with hadoop key command line interface,

hadoop key create encKey

The command creates an encryption key for the bucket we want to protect. Once the key

is created, it can be used for reading and writing data into a bucket.

To assign the encryption key to a bucket in Ozone,

ozone sh bucket create -k encKey /vol/encryptedBucket

After this command, all data written to the encryptedBucket will be encrypted via the

encKey and while reading the clients will talk to Key Management Server and read the

key and decrypt it.

2.3.4. Preventing cache attacks and micro-architecture induced

vulnerabilities

Cryptographic mathematical functions in use are generally secure. It means that a simple

set of encrypted data cannot be used to discover the applied cryptographic key in a

reasonable amount of time, even when using the most powerful computer of the world.

Cryptanalysis cannot succeed.

However, in some cases, side-information to the set of encrypted data, generally acquired

during cryptographic computation, can turn the cryptanalysis mathematical problem into

something that can be computed in a reasonable amount of time. This is called a side-

channel attack.

20

There are many origins for side-channel leakage. A recently discovered one is induced by

the hardware architecture of modern microprocessors itself. More precisely, it is due to

branch prediction and other forms of execution speculation used to significantly speed-up

computations.

This is very annoying because this kind of hardware architecture and techniques are

present in all modern microprocessors. And permanently disabling the excursion

speculation has a huge impact on performance.

The more efficient path is to modify or fix part of program where it is analyzed that

information leakage, being a danger to security, occurs.

The Catalyzr tool, developed by SIC in Braine, is here to assess the security of software

with regards to side channel attacks. The goal of the tool is to analyze programs in order

to detect, locate and characterize different types of vulnerabilities associated with those

attacks.

The tool operates in a semi-automated way, allowing the user to generate a vulnerability

report given an input software target. Depending on the type of vulnerability, the Catalyzr

performs the detection either by static analysis, by identifying leakages at the source code

level, or by dynamic analysis, by executing the program binary and discovering

vulnerabilities from its observable behavior.

In the context of Braine, the targeted vulnerabilities are microarchitectural vulnerabilities,

and are detected by static analysis. The Catalyzr prototype for Braine usage is working,

has been tested, and has now started to be used in “real case” application on some Braine

programs.

Semantic Web

The idea is to apply AI to the semiconductor supply chain and supply chains that contain

semiconductors. So far, the development of this idea is too complex, because it requires

individual exposure and pattern recognition. AI is already being used in other areas such

as customer order behaviour prediction, over- and under planning, and wafer maps. It will

be better to apply the idea first to an easier understandable domain.

21

3. Efficiently handling data at the edge at scale

3.1. Secure and Optimized Data Placement

Data stored in the storage system of a BRAINE EMDC may belong to different data

owners, users, and applications. Categorizing data and storing it separately will assist in

maintaining data privacy and security. For instance, data belonging to a different

application or data owner can be stored on different data nodes guaranteeing isolation

among users and their access requests.

A data placement framework is supposed to control the data/ file placement in the storage

system based on resource requirements, privacy and security constraints, and

performance requirement (to optimize). This data placement API is implemented as

external API out of Ozone file system. The modified Ozone will call the placement API to

get the suitable nodes for the placement of particular request. The design of such a

placement framework will be based on:

• User’s/ Application’s data placement requirement. These requirements mainly

provide the details about storage constraints to the data placement API. This

information may be defined for each application as input from application or the

information about the application in the system (like persistent volume created

inside the Ozone). These requirements can be stored as metadata of the input file

and used for data placement. If there are no constraints defined on some

application’s data, then its allocation will be done with the Ozone’s default

placement policy.

• The data placement API also keeps the present state of data allocation on various

data nodes (allocation of application's data on different nodes). The placement API

uses this record and the input data requirements to identify the data nodes suitable

for secure data placement.

• A modified Apache Ozone that calls the external placement API to get the selected

data nodes to store the input data.

3.2. Efficient analysis of the time series and detection of motifs

Motif Discovery tool (MOD) is an advanced analytic tool specialized for time-series data

streams. Such a stream cumulatively represents a considerable load on network

bandwidth, which is very demanding in edge-to-cloud communication. When most data

processing is offloaded to the edge, MOD significantly reduces the communication load.

22

Support modules are required to achieve such a communication relief: The Discovery

module and the Detection module.

The Discovery module analyses the batched offline time-series data to find repeating

patterns (motifs) and builds a dictionary of distinctive motifs shipped to the cloud. The

Detection module then consumes an online stream of sensory data. It converts segments

of detected motifs into discrete references in the dictionary, and only the references are

transmitted to the cloud. In the cloud, Digital Twin (DTwin) consumes the references and

updates the production model accordingly. The overview diagram is depicted in Figure

3.1.

Figure 3.1 The overview of the whole MOD tool design

The development of the Discovery, Learning and Detection module reached the release

point. Those modules are now at the alpha versions and are tested in a CNIT Braine

Testbed and on real HW at CTU Testbed for Industry 4.0. Currently, these components are

being integrated within the UC3

3.2.1. Motif Discovery Module

The Motif Discovery module enables the discovery of all repetitive patterns of any size in

any time-series data. The time-series data from the perspective of BRAINE are sensory

data from machines and devices on the shop floor. The discovered patterns represent

the unique operations of the machine.

The Discovery module requires access to the Influx database that collects and stores

time-series data from sensors. Within the Influx database, there has to be a separate

23

bucket dedicated for online storing the sensory data stream and providing those data in

batches to the Discovery module on demand. The design of the data processing pipeline

is depicted in Figure 3.2.

Figure 3.2 Discovery module data processing pipeline

The discovered patterns are required by the Learning module (WP3-T3.1) to train the

Detection module (WP4-T4.2) properly

3.2.2. Detection Module

The Detection module of the MOD application uses state-of-the-art machine learning

models to detect the current operational state of the machine. This module uses online

time-series data as an input and returns the current operation of a device. Additionally,

the Detection module checks the incoming time-series data for deviations from its

typical behaviour. When a deviation occurs, an alarm is set on, and subscribers are

notified. The design of the data processing pipeline is depicted in Figure 3.3.

24

Figure 3.3 Detection module for online pattern/motif detection in data processing pipeline

The detection module requires access to a notification channel and data sources

delivered by the Service mesh component of the BRAINE platform. The service of the

Detection module is utilized in UC3. The KPI KP1 in chapter 3.3.5 in MS5 indicates the

Detection modules' achievements.

3.2.3. Digital Twin Module

Digital Twin (DTwin) module is designed to run in the cloud. It provides a high-level

overview of the entire factory manufacturing process in the form of a discrete-event

system. It requires a dictionary of learned models supplied by the MOD Learning Module

(WP3-T3.1) to reconstruct the continuous data streams from the sensors when needed.

Additionally, it requires online detection of current machine states provided by the MOD

Detection Module (WP4-T4.2).

3.3. Virtualized RAN and use-cases cooperation

To address the requirements of data handling at scale in BRAINE we should look at vRAN

and use-cases from the perspective of further alignment of the two. The alignment planes

are two: (a) resource optimization at vRAN (radio, computing) and (b) semantic alignment

of the vRAN domain and a use-case domain, that targets contextual understanding of use-

case's data characteristics, topological as well as HW information about data

sources/targets, existing options and variants to achieve optimization etc.

The vRAN requirements for the WP4 revolve around two aspects, which are essential for

pursuing the tighter integration between vRAN and the BRAINE architecture. These are

25

especially (i) the potential that vRAN can introduce to the relevant optimizations of data

handling by means of appropriate resource management and configuration of the slice

and (ii) the contextual knowledge about use-cases and its requirements. The key

perspective considered here for such integration (or coordination) between 5G workload

and underlying EMDC architecture, is effectively handling data at scale. Handling data

effectively at scale maps to addressing performance requirements of any BRAINE

workload, and especially the secure 5G wireless communication infrastructure.

At the current stage of the BRAINE release 1.0 the use-case characteristics and

requirements have been identified and provided in Deliverable 4.1, "First report on the

status of WP4". Also, the technical requirements of vRAN to operate on top of existing

EMDC HW, have been described in Deliverable 5.1, "Functional requirements for BRAINE

infrastructure and platform service". But so far there was no direct fusion and alignment

of the two at this stage considering either semantic, or technical perspectives. So far, the

relation between vRAN and the BRAINE use-cases (especially UC2) has been performed

at the level of capabilities identification, that is indicating the characteristics of a use-case

and the requirements the need to be fulfilled at 5G connectivity level in order to deliver it

successfully.

In this milestone report we provide a targeted approach to address high alignment

between use-cases and optimizations at vRAN level – the target is to seek redundancy

removal in the area of data volume, as well as number of requests for resources.

Below, the two essential approaches to prepare vRAN for data handling at scale are

identified, namely (a) baseline approach and (b) extended approach. The former relies on

appropriate configuration of vRAN instance(s) while the latter builds on top of semantic

integration between vRAN resource management (radio, computation) and use-cases.

3.3.1. Baseline approach for data handling at scale with vRAN

There are multiple means that can support handling data at scale in the edge EMDC when

it regards vRAN as a special purpose workload. The vRAN besides the EMDC scheduler

and orchestrator, influences data handling capabilities from radio/computing resource

perspective. There are at least a few options for special purpose configuration of 5G

vRAN, which depends on the services characteristics:

26

1. Option1: Service provisioning for a mMTC service (slice) - in the baseline

approach vRAN requirements can be limited to the appropriate identification of

service type (or types) that a particular use-case represents. Basically, in 5G there

are three types of services supported: eMBB, URLLC and mMTC. Nominally only

the latter one is considering “handling data at scale” by design (special

mechanisms to decrease signaling overload), which considers the IoT/IIoT based

use-cases (e.g., eHealth, smart city). The typical mMTC use-case maps to a set

of requirements that manifest mainly in a large number of terminals, with low but

bursty traffic demand. Usually, the data is sent in uplink as the UE devices

represent some sort of sensors. There are some special features foreseen by

3GPP on the side of vRAN that are provided to assure high robustness like e.g.:

grant-free signaling, NOMA multiple-access and so on. This way the network which

has been configured for mMTC is already provisioned for the requirements of

multiple connections.

a. Baseline methods to support data handling at scale by vRAN configuration

consider:

i. Slice provisioning and configuration to address QoS/QCI profile of

a use-case application traffic

ii. Admission/congestion control, scheduling solutions tailored to a

use-case requirements

iii. orchestrator based tuning of workload placement, scaling that

supports computing resource optimization (e.g., OPEX driven)

b. Comments:

i. The essential aspect that determines the optimization capabilities

is the vRAN disaggregation granularity. Namely the higher the

disaggregation level the more capabilities for vRAN optimization

and tuning (regarding the computing resources usage) due to more

flexible adaptation

ii. such optimizations are subject of task T3.3 in BRAINE and they

address aspects of vRAN workload modeling, prediction and

resulting placement (scaling) decisions.

iii. this option has the capability to fine tune both radio and computing

resources to adjust it to the needs of a use-case.

2. Option2: Establishing local breakout by means of vRAN - MEC cooperation (for

URLLC, eMBB) - alternatively in case when data demand has characteristics that

demands e.g., very low delays (real-time behavior) then we speak about URLLC

27

type of applications, that demand ultra-low latencies and very high reliability (i.e.,

very low tolerance for packet loss). In the latter case we can be speaking about

grant-based communication (so legacy signaling) but there can be mechanisms

like ETSI MEC servers configured in the network in order to offload data-handling

from cloud to the edge. This would result in lower delays, higher offloading

capability and thus also could result in less load towards the network core.

3. Option3: Introduce vRAN resource pooling - however with virtualization of RAN

(vRAN) and opening of RAN interfaces (open-RAN), one faces the new capabilities

for pooling “core/CU/DU” resources in the edge or edge cluster servers. This way

the scaling of vRAN becomes feasible both: (I) horizontally i.e., at the edge, or also

(ii) vertically moving some elements of 5G processing infrastructure workloads to

cloud (or multi-cloud). Such scaling flexibility is being addressed in task T3.3 in

combination with workload prediction and placement algorithms for vRAN.

4. Option4: Acceleration of vRAN radio stack components - data handling at scale is

tightly related to the capability of “acceleration on demand” that is controlled at

edge orchestration in the process of slice (or network) design and provisioning.

Acceleration can utilize special purpose HW resources, which can be made

available to a radio stack, and thus offload the CPU processing of the entire EMDC.

It is essential to notice that efficiency of such performance boosting will heavily

correlate with the level of vRAN disaggregation as well as particular layer

considered, a specific mechanism to be accelerated, and so on.

To summarize, this baseline approach calls for targeted deployment of vRAN that is

service aware and tuned with special use-case driven settings (e.g., grant-free access) or

additional mechanisms, to serve data handling at scale (Option1-4). The vRAN itself

brings the possibility of scaling own resources in case user density, traffic volume to be

processed is higher. This approach can further be combined with special purpose

resource management for vRAN – described below as “extended approach” to data

handling at scale. In BRAINE release 1.0, Option1 will mainly be key focus point for

configuring the 5G infrastructure during integration phase. Later, towards Release 2.0, the

options Option3 (related to T3.3) and Option4 (related to T2.2) are considered crucial. In

turn Option1 can be combined with optimization objectives identified in T3.3 (Option3), to

support selected resource management mechanisms.

28

3.3.2. Extended approach for data handling at scale with vRAN

For the so-called extended approach to 5G secure vRAN provisioning, that targets

handling data at scale, it is assumed that by incorporating contextual information about

the use-case into the vRAN resource management processes is essential. The data

handling at scale can be optimized by means of wise decisions regarding resource

allocation – such that allows for smart adaptation of infrastructure and the relevant

signaling.

In order to identify the synergies and cross-relations between the use-cases on top of the

BRAINE platform and the 5G network component and the complementary requirements

i.e., of hosting the 5G workload on an EMDC, it is essential to provide means that would

allow capturing and better defining existing dependencies between the two. Such means

in BRAINE can naturally be: (i) BRAINE ontology (ii) common telemetry framework where

all the metrics can be fused/filtered by any consumer around Kafka bus (iii) services and

use-cases ontology or (iv) use of corporate memory tool (cmem) that provides data

exchange options at scale. The architectural building blocks of BRAINE, like: telemetry

collection, metrics semantics unification, data sharing by message bus, are causing a

situation where BRAINE becomes an alternative to using MEC. However, MEC as a set

of specifications seems less flexible and demands purpose-build adaptations and

extensions. As such BRAINE brings homogenized system that allows cross-layer

optimizations.

Based on the goals of “handing data at scale” the BRAINE EMDC could benefit from the

tailored vRAN design in the following ways:

• Option1: vRAN own optimization combined with the complementary adaptations

on the use-case side (including SW or HW)

o Methodology

▪ vRAN is capable of accessing the use-case's contextual

KPI/metrics, which are exposed on the monitoring platform of

BRAINE (e.g., Kafka bus).

▪ It becomes possible to define a solution on the side of vRAN

(algorithm, xApp) which will be able to support the data-at-scale

handling by e.g.: (a) preventing selected data flows from accessing

the network in UL or DL direction (b) limiting selected data flows by

29

considering various mitigation strategies as well as semantic

inference about “multi-modalities” of sensors used in a UC (i.e., use

acoustic sensor when a location is empty and some cameras can

be turned off)

▪ special purpose BRAINE/vRAN controls need to be defined to

interact with a use-case actuators/sensors at the communication

network level

▪ special purpose BRAINE/vRAN controls can consider either the (a)

model-based control system available to vRAN (e.g., SDN based

RAN controller) that actively manages the use-case elements (e.g.,

cameras) and its connectivity layer or (b) semantic driven and

policy-based mechanism by which it is possible to cross-relate and

orchestrate vRAN together with a use-case (here the role of SDN

RAN controller is also possible) or (c) dedicated SDN RAN

controller xApps.

o Insights

▪ The benefits here are related to the more proactive, but also

application (user) agnostic, bottom-up adaptations of a use-case

elements (e.g., camera, sensors, robots, etc.) by means of a

provided knowledge base (e.g., SUMO ontology) encompassed

with relevant rules and query capabilities.

▪ Semantic model of a use-case can also improve the accuracy of

prediction at the vRAN resource management level. Semantics

allows more insights into the characteristics of use-case traffic

flows, its evolution in time to reflect changes in use-case operation

and so on. Moreover, it is relatively easy to combine semantic

knowledge with policy-based rules and system state based on up-

to-date monitoring system telemetry.

• Oprion2: Holistic workflow based, ML/AI driven, cross-optimizations of vRAN and

use-case elements (SW and HW components) that are rooted in the availability of

high-level workflow definitions that address both vRAN and the particular use-case

operations.

o Methodology

▪ This option brings the most of capabilities of cross-relating vRAN

(infrastructure) with the use-case (applications) but it can be

30

already done by mechanisms present at the workflow lifecycle of

both vRAN and use-cases.

▪ Here the relations between both workload types, as well as related

HW elements, are happening at the level of processes definition,

especially considering the relations between ML/AI models, their

similarities, goals (utility functions) and so on.

o Insights

▪ This approach should be combined with the underlying policy-

based subsystems at BRAINE EMDC for maximized performance.

Moreover, the careful design of ML/AI workflows will be crucial.

It needs to be noted that different options presented above for the so called “extended

approach to data handling”, naturally map to the differences in the integration (coupling)

level between vRAN (5G) and the surrounding use-cases and its components. The higher

the option number, the higher the capabilities for cross-workload interactions and

especially the influence on handling (predicting, mitigating) data at scale can be foreseen.

It is assumed that by introducing use-case characteristics to the modeling of optimizations

at the vRAN side - the benefits for data-handling can reach the highest levels. Here the

strong requirement to proceed is the design and filling of the use-case specific ontologies

with related instances and SPARQL rules to infer from ontology contents. In BRAINE

release 1.0, the use-case ontologies do not yet exist, this is why the topic needs to be

further elaborated towards release 2.0.

3.3.3. Impact on design and implementation

In order to allow addressing the challenges resulting from abrupt (or foreseen) data

volume increase at an EMDC, there should be provided higher level of semantic cross-

relation between the use-case characteristics and the radio/computing resources behind

vRAN within the EMDC. The summary of the impacts influencing both sides (vRAN, use-

cases) has been presented below. It needs to be highlighted that the aspects considered

in this D4.2 require that D3.4 (monitoring of metrics) is first accomplished to then build on

this and evolve towards D4.2 concepts.

By allowing the vRAN to better “understand” the role and criticality of the data foreseen to

be delivered by use-cases of BRAINE EMDC (in both UL and DL directions), the semantic

contexts of the two aspects, namely: use-cases and vRAN, needs to be considered. In

this way a weak coupling can be provided so that vRAN decision making (resource

31

allocation, congestion control, etc.) can be linked to the actual goals and current state of

the use-case operation (including its underlying sensors/actuators). Here the common

denominator would be at the level of semantic bridging (e.g., by means of shared

vocabulary and rules).

The baseline approach is that a use-case is represented by the type of traffic profile in

order to determine appropriate slice requirements. But such approach is not enough to let

the 5G infrastructure engage in adjusting (by e.g., RAN intelligent controller) to the

changing environment conditions and especially to the changing execution context of use-

case operation (considered here broadly as a complete OTT system including SW and

HW components). The approach considered here is to an extent motivated by the physical

layer security research (i.e., PLS), where the influence on the resource allocation

regarding an eavesdropping user terminal, has the capability to radically reduce their

vector of attacks.

3.3.3.1. Impact on design of BRAINE architecture

The BRAINE architecture allows inclusion of semantic description about use-cases,

moreover various policies can be defined for and EMDC node operation under changing

context of execution. This way certain steps will be done for the integration stage

planning, in order to assure the following targets:

• Selected use-case providers together with vRAN developers will co-design

purpose-build higher level KPIs aggregating the details characterizing the use-

case and enabling the understanding of use-case traffic flows - allowing for

capturing cross-dependencies between space/time dimensions of a use-case at

the level of networking infrastructure. This way technical means for aligning the

two domains would be assured (i.e., applications and networked EMDC 5G

infrastructure), by providing semantic indications of e.g.:

o use-case traffic characteristics (QoS profile, requirements, …) - to

understand what the traffic flow parameters and volumes are

o number of HW elements used by a use-case as sensing devices (or

actuators) together with their capabilities (e.g., HW, SW, I/O) and cross-

relations to be able to capture that e.g., noise sensor can be orchestrated

instead of a camera in place where there is low human traffic in order to

identify the crowding situations

32

o high level targets for data collection/generation (i.e., how devices acquire

data, what data is actionable, when the data can be treated as “successfully

delivered”, what data can be omitted in case of resources shortage)

o geographical context of the services and HW elements - i.e., where the

sensing/actuating devices are deployed, how much they are correlated in

space and time between themselves and other elements of a use-case (or

use-cases)

o meta-description of models backing up vRAN and a use-case, together with

ML/AI modeling pipelines that are used to train, validate, and update the

models (or lifecycle)

o alternative data sources identification i.e., various alternatives for data-

fusion that may exist but could provide alternative sources of data to make

use-case valid even in case of some performance degradations. Example

would be to utilize “noise sensors” instead of cameras where “suitable”.

Suitability should be provided in form of a rule or other kind of model.

o The above parameters can also be considered in the process of learning

mutual correspondence and cross-relations.

• Designing vRAN deployment will consider capabilities for intertwining the slice

design (network and service descriptors) with the BRAINE semantic descriptors

and especially service (use-case) ontology. Slice design represents the process of

adjusting vRAN configuration to the needs of a use-case (traffic profile)

• The use-cases semantic description will be capturing traffic

flows/demands/statistics with the indication of service requirements for

successful SLAs and where/when data can be accommodated by the network (in

which cases, for which HW, for which scenarios, etc.). Statistical models of the

traffic (and variants thereof) should be able to be built and provided towards the

orchestrator (workload predictor / resource manager).

• Modeling cross relations between workloads (e.g., a BRAINE use-case vs

vRAN) will be performed in the integration stage, by considering optimal alignment

of multiple layers:

o Semantic models of use-cases as well as the network infrastructure

▪ Application oriented

▪ Security oriented

▪ Resource oriented

o Policy based network management mechanism and policy unification

33

o Deconfliction of mutually excluding goals of various components

(infrastructure, use-cases, management)

o ML/AI models meta-descriptions with workflow descriptions

3.3.3.2. Impact on implementation of BRAINE releases

The BRAINE releases will depict various levels of maturity of vRAN, enhanced in order to

handle data at scale. For release 1.0 the following aspects are considered.

The vRAN is provided as container-based Kubernetes cluster including: core network,

centralized unit (CU), distributed unit (DU) as well as physical layer. At this stage the

“baseline approach” for data handling will be prepared and the mechanisms for resource

management will mainly be configured during the integration stage to suite the use-case

characteristics. Whereas for the BRAINE release 2.0 another set of implementation steps

is planned to match the “extended approach” for data handling. Namely the following

features will be considered:

• vRAN orchestration and resource management demand to have access to a

semantic description of a use-case (at the most relevant levels of generalization)

o There should be KPIs/metrics together with rules that regulate their relation

to underlying infrastructure of use-case infrastructure including

sensors/actuators and network requirements

o Specifications to be considered:

▪ ETSI ISG CIM (context information management)

• Same way vRAN metrics/KPIs to be provided for the use-case elements (and

decision-making process as such) directly or via BRAINE ML/AI workflow

components (proxy mode)

o Solutions considered

▪ MEC APIs

▪ RIC xApps

▪ Prometheus exporter.

Optionally, in release 2.0 the following aspects will be considered, depending on the

completeness and shape of the ontologies of use-cases:

• Assurance of security requirements for a use-case to highlight not only

performance but the relation of performance and security goals (and trade-offs) of

34

a use-case (this can utilize use-case workflow definition, or the use-case models

workflow / pipeline)

o Ciphering, encryption standards required by use-cases are potentially E2E

so transparent to vRAN

• Availability of higher-level policies for BRAINE architecture with common

semantics and syntax (i.e., based on the IETF specifications). Moreover, the policy

selection, validation and enforcement will be carefully planned at overall level of

BRAINE as well as aligned towards the “per component” policy subsystem (e.g.,

governed by the COPS or XACML models)

o Implementation consideration

▪ Identify suitability (and gaps) of BRAINE policies

▪ Identify suitability of XACML/COPS

• The design of vRAN optimizations will consider the use-case ML/AI models (and

meta-models) for inclusion in the process of e.g., prediction algorithms design

(e.g., by knowing the use-case specific – measurement based – model of operation

vRAN can be tuned to respond to the realistic traffic demands

o Implementation consideration

▪ Identify common ML/AI workflow tool (Argo, Kubeflow, etc.)

▪ Identify metadata and other tools to allow cross-workflow alignment

between vRAN and a use-case

• vRAN will be tailored to access the use-case metrics and KPIs at various levels

of details by means of BRAINE common data bus (e.g., “number of cameras

installed in location ABC”, “number of cameras that don’t recognize any person”,

“number of cameras that can be turned off if noise sensor is in place”, “camera

battery level”, type of surveillance scenario that is applied for the data collection

and processing, etc.)

o Implementation consideration

▪ Identify proper interface to collect data from BRAINE (Telemetry

platform) and make it accountable to vRAN

▪ Identify relevant ontology information (classes of interest for KPIs,

SPARQL queries, etc.) - or possibility of acquiring data with the help

of the cmem5 tool

• vRAN should be capable by release 2.0 to interact with elements of BRAINE

architecture that can be used to search for use-case optimizations and traffic (data)

compression or rationalization in certain situations.

o Existing policy management system

35

o Existing resource management of the NFVI

The above considerations present set of concrete guidelines that should streamline the

further work of WP4 partners and liaising with the WP5 use-case partners in order to

provide semantic models that will be able to cross-reference with wireless-network

ontology. The next update will be provided in the D4.3 document.

 AI application profiling

The execution of complex Deep Learning (neural network) algorithms on heterogeneous

hardware configurations opens the field for several optimization opportunities. However,

the combination of large number of algorithms and hardware configurations makes the

development of one-size-fits-all heuristics complex. In order to explore the optimization

space and ensure optimal hardware utilization, thereby reducing energy requirements and

improving runtime performance, we designed a profiling tool that can reconstruct the

dynamic direct acyclic execution graph of deep learning algorithms.

This tool is integrated as part of the NEC’s SOL compiler/runtime tool-stack, and it extracts

computation graphs resulting from the tracing of a neural network execution, as shown in

Figure 3.4.

36

Figure 3.4 Neural Network execution profile extracted by the SOL runtime profiler

The extracted profiles are then ready to be delivered to the remaining part of the tool stack

to apply optimization rules generated by potentially different optimization technologies,

including heuristics and data-driven approaches.

The overall tool is integrated into applications by leveraging direct import in high-level

domain-specific machine learning frameworks, such as PyTorch and TensorFlow, and

therefore it can be shipped jointly with the application deployment units.

One of the additional features being currently introduced in the framework is the ability to

perform short micro-benchmarks on target hardware executors (which might be made

available both at development or operational time). These executions are used to measure

the performance of certain parts of the input neural network, in order to better profile the

execution taking into account the specific nuances of the target hardware.

Integration Plan

37

The AI profiler is developed as part of a compiler stack that can be used during the

application development time, integrated with common AI frameworks such as

TensorFlow. We have integrated the technology in a container template that can be used

as basis for the development of data analysis applications.

Therefore, in terms of integration the AI profiler is considered as part of the AI analysis

application’s software stack, and it operates transparently from any other EMDC's

subsystem. However, its general life cycle is handled like any other container/service

deployed on the platform.

38

4. Workflow definition language and authoring tool

Workflow definition language The Workflow definition is currently being handled by the

OWL-S process class (Figure 4.1) which allows the specification of Atomic, Simple and

Composite processes as well as their parameters and results. Simple Processes are

single step processes and are realized by an Atomic Process. CompositeProcess are

composed of two or more processes and have their execution specified into constructs

such as Sequence, Split, Any-Order, etc.

Figure 4.1 Service Deployment Specification Window

For being open source and tightly integrated with Kubernetes, Argo was chosen as the

service workflow execution framework. In addition, it offers all required functionalities in

the project scope and users can describe workflows in a declarative way using manifests

in a similar fashion to those of Kubernetes and Docker.

With the addition of the Argo framework to the BRAINE software stack, we add two formal

ways for workflow definition (1) through OWL-S and (2) Argo Manifest file (Listing 4.2).

39

The latter, however, seems to be more aligned with the overall project architecture and

can be easily managed by the user as well as by the system.

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

 generateName: hello-world

 labels:

 workflows.argoproj.io/archive-strategy: "false"

 annotations:

 workflows.argoproj.io/description: |

 This is a simple hello world example.

spec:

 entrypoint: hello-world

 templates:

 - name: hello-world

 container:

 image: hello-world

Listing 4.2 Argo hello-world workflow example.

Authoring tool on its current implementation, the authoring tool allows the definition of

the ServiceDeploymentSpecification by selecting the desirable placement (Node) and

ServiceProfile. The ServiceDeploymentSpecification is a conjunction of the ServiceProfile

containing metadata regarding the service, and the placement, containing information

about the Node. This schema allows the reusability of different Specifications for

(re)deployment. However, there is no possibility to define composed Services

(Processes). This additional information is part of a discussion that is still going on

regarding the definition of the input-data as well as the service itself. One option is to use

the OpenAPI specification for defining parameters, or extend the existing OWL-S. Either

way, it will be required to extend the metadata for defining the input metadata. Figure 4.3

and Figure 4.4 show respectively the Service Deployment Specification and Deployment

User Interfaces. We intend to explore the creation of interfaces in other front end

development frameworks in the next period.

40

Figure 4.3 Service Deployment Specification Window

Figure 4.4 Deployment Creation Window

Deployment States When a user creates a Deployment it is marked with the state

Creating. When the scheduler reaches awareness of the new Deployments, the

Deployment moves to the state waiting and stays in this state until the full Deployment is

deployed. After being deployed, the state is then moved to Running and stays there until

41

the task is finished or stopped. A service may have two finish states Finished Clean or

Finished With Errors. A service has a clean finish when it executes the task in a whole

without exception and with errors otherwise. While waiting or after a service execution the

user can check the Log metadata to check for execution errors, runtime, or service

debugging. Following Figure 4.5 and Figure 4.6 gives an overview of either Deployment

and Service Deployment Specification classes available in BRAINE vocabulary at

https://github.com/eccenca/braine-vocab.

Figure 4.5 Deployment Class

Figure 4.6 Service Deployment Specification Class

Node Scheduling The architecture of each Node is already collected using the

Kubernetes Node APIs, Figure 4.7 shows the Node meta-information collected and

managed by the BRAINE platform. It allows the user to identify the best Node for AI

Service running, training, or testing by choosing the desirable Node architecture. With the

collected running metadata, it is also possible to check possible running failures, data

access and execution metadata by using the Log metadata from the Deployment class.

https://github.com/eccenca/braine-vocab

42

Figure 4.7 Node Info metadata

Evaluating Service & Workflow Execution The service measurement and monitoring is

performed through the classes Deployment and Log. The class Deployment contains

metadata information about the Deployment state and the Log about the execution.

Currently it is possible to register individual executions of every single agent involved in

the Service. Thus, the user can check the system health and runtime through the Logs

and promptly execute corrective actions in case of failures such as redeploying the Service

in another Node. One feature that we want to evolve in the next version is to include the

possibility of registering individual Log information as events such as Information, Error,

and Debug. It also would be good to have a Log for each Service. As the possibility to

create composed Services is still not possible, there is no necessity to have the Service

specified. Another possibility is the addition of Data Access events in the log file such as

Read and Write. To enable Memory and CPU monitoring by Deployment, there is a

necessity to add Kubernetes PODs metadata to the Log Class as well the input

parameters in the ServiceDeploymentSpecification.

The same is valid for Networking, which we currently are not being registered. We intend

to address these issues in the next Deliverable. Following Figure 4.8 and Figure 4.9

shows respectively Deployment and Log classes from BRAINE vocabulary at

https://github.com/eccenca/braine-vocab.

https://github.com/eccenca/braine-vocab

43

Figure 4.8 Deployment class

Figure 4.9 Log class

44

5. Measurements and monitoring

5.1. Flow based network telemetry framework

The telemetry framework is responsible to generate and collect telemetry information

regarding the network node behaviour and the traffic passing over the network node.

It consists of the following sub-components:

• HW running P4 program, exporting telemetry and generating telemetry events

• P4 agent application that initialize and configure the HW P4 program to

add/remove flows that should be monitored.

• Monitoring and export unit that processes raw data and converts it to a format that

can be used by collectors

•

Following interfaces are used to communicate between components and external

interfaces:

• P4 programs based on P4-lang to program data plane of network elements and

telemetry collector

• gRPC to export the data from Network telemetry framework to adapter unit (see

below Figure 5.1)

Figure 5.1 An overview of the Flow based network telemetry framework and components

45

5.1.1. Flow telemetry Agent (C.4.14)

The Flow Telemetry agent is responsible to initialize and configure the P4 program that

was auto-generated by MLNX P4 backend compiler, this agent's main user interface is a

CLI running on SONIC. This agent also configures the needed HW capabilities to enable

telemetry reporting (Mirror). An example configuration is a Flow (5 tuples) that should be

monitored. Once the selected network session/flow was added to P4 tables, the HW will

send telemetry events to the Telemetry monitor & exporter components.

5.1.2. Flow P4 program (C4.14.1)

The Flow telemetry P4 program is responsible to configure the low-level HW to support

the P4 program written in P4-lang. In the flow telemetry case, this is a P4 table monitoring

5 tuples and mirroring the sampled traffic to the switch's CPU for reporting to the remote

collector.

The P4 table (ACL) holds entries with 5 tuple keys and mirror actions, the Flow telemetry

agent is responsible to add those entries. Below is the P4 table used for flow telemetry.

Figure 5.2 P4 source code to define the flow telemetry table

This program is auto-generated from the P4 source code by MLNX backend P4 compiler.

46

5.1.3. Telemetry Monitor and exporter (C4.14.2)

The telemetry monitor & exporter is responsible to collect and report telemetry data from

network elements regarding network node behaviours and the traffic passing over the

network node.

This component will wait for selected telemetry events from HW (that was configured by

the P4 program C4.14.1) and will generate a report via gRPC to the Adapter component

(C13.17.1).

Below is the example gRPC proto file that is used to stream data from the telemetry

monitor & exported to the Adapter component

Figure 5.3 gRPC proto example used in The telemetry monitor & exporter

5.2. Monitoring and Dashboarding

Monitoring and dashboarding components are parts of the overall BRAINE telemetry

system. The monitoring component processes events and generates alerts. The

47

dashboarding component provides a central visual interface to disseminate information

about the devices, the platform, and applications statuses.

At the moment, metric collectors and exporters send their metric data to a central InfluxDB

instance. We use Grafana to obtain metric data from this database and visualize it via

various dashboards and charts. It is able to query InfluxDB and Prometheus by using

InfluxQL and PromQL, respectively to build custom datasets for visualization.

The dashboards for Grafana can be generated with a UI interface, or manually generated

by creating/modifying a JSON file. We have also provided containerized visualization

specification elements for quick and easy assembly of new customized Grafana

dashboards. Each visualization specification can be manually added to a list, and when

a corresponding python file is executed, it will develop a custom dashboard. There are

requests to separate device and platform metrics from the application metrics and even

further to separate either physically or logically the metric data of the applications. Also,

there is a request for replacing the telemetry database for high availability and multi-cluster

systems. Although these requests fall under WP3 here LUH is investigating their impact

on monitoring and dashboarding.

Figure 5.4 An example of the monitoring dashboard showing charts of CPU, Network Traffic, and Memory

48

6. Components

6.1. Data lifecycle manager (C4.1)

Component ID Component Name Development Owner

C4.1 Data lifecycle manager 30% DELL

GitLab Repository: In Progress

Containerized: Y

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: Y – Apache Ozone global filesystem

Status Report:

Development of the data lifecycle manager is in progress, with current development

and testing occurring with an internal test and integration with the global filesystem

used within BRAINE. The manager is containerized and can connect to the Apache

Ozone global filesystem, but development of a process to ingest filesystem events into

an immutable ledger is ongoing.

6.2. Policy manager (C4.2)

Component ID Component Name Development Owner

C4.2 Policy Manager 50% DELL

GitLab Repository: In Progress

Containerized: Y

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: In Progress

Status Report:

The policy manager is based on Apache Ranger, which integrates seamlessly with the

global filesystem, Ozone. It must also integrate with the SLA Broker and lifecycle

manager for effective data monitoring and enforcement of policies, which is ongoing.

49

6.3. Global File System (C4.3)

Component ID Component Name Development Owner

C4.3 Distributed Data Storage 70% DELL

GitLab Repository:

https://hub.docker.com/repository/docker/khalia6/ozone

https://hub.docker.com/repository/docker/khalia6/csi-node-driver-registrar

https://hub.docker.com/repository/docker/khalia6/csi-provisioner

Containerized: Y

Registered on BRAINE platform image registry: Y

Deployed as a pod and functional on BRAINE platform: Y

Integrated with other platform components:Y

Status Report:

The data storage is based on Apache Ozone and seamlessly stores data across

heterogenous CPU architectures (ARM and AMD). The multi-tagged docker images

have been prepared and tested. This component can be used by all the applications

that require persistent storage. Efforts on interfacing and integrating the storage system

with the data placement framework are ongoing.

6.4. Active Data Product (C4.4)

Component ID Component Name Development Owner

C4.4 Active Data Product (ADP) 15% LUH

GitLab Repository: https://github.com/braine-project/WP4R/tree/main/T41

Containerized: Y

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: N

Status Report:

An active data product is indeed a dataset encapsulated in a secure container that

allows access via a well-defined access point that conforms to the terms of an agreed-

https://hub.docker.com/repository/docker/khalia6/ozone
https://hub.docker.com/repository/docker/khalia6/csi-node-driver-registrar
https://hub.docker.com/repository/docker/khalia6/csi-provisioner
https://github.com/braine-project/WP4R/tree/main/T41

50

upon contract. A data product is said to be active as it can operate in an external

environment. It is indeed a self-contained, secure executable package that must be run

in order to allow for the utilization of the data it contains. When requested by external

agents to access the data, it will ensure that the request and the response comply with

contract terms, usage, sovereignty regulations, and boundaries defined.

A contract definition language using YAML is under development, by which the data

owner can define the terms and conditions for accessing the data. The contract is then

enforced by the contract controller. Any legitimate access to the data will be recorded

in a blockchain for contract term enforcement as well as for auditing and accounting.

The ADP component is a prototype and may not be secure enough for production

environments with high-sensitive data.

Each UC that aims at sharing data with other UCs or external systems/parties may

benefit from this component.

6.5. Catalyzr tool (C4.5)

 Component ID Component Name

Development

Owner

 C4.5 Catalyzr Tool 50% SIC

GitLab Repository:

Containerized: N

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: integrated with the Global Service

Registry.

Status Report: Catalyzr is a tool for joining work between cryptographer and software

developer for hunting security vulnerability. The capability to track microarchitecture-

induced vulnerabilities (e.g., Spectre / Meltdown breach class) is operational. The

Catalyzr is now deployed for join work between SIC and ISW to secure ISW

cryptographic software libraries.

51

6.6. Authoring tool (C4.6)

 Component ID Component Name Development Owner

 C4.6 Authoring Tool 50% ECC

GitLab Repository: https://github.com/eccenca/braine/tree/main/webclient

Containerized: N

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: N – The Authoring Tool haven’t been

integrated with the Global Service Registry.

Status Report:

The Authoring Tool for service composition is under development. The data model to

support persistence through the Resource & Service Catalog is already implemented

while the development of the user interface has been already initiated. In the next

iterations we expect to have a functional and integrated version working.

6.7. Service Orchestrator (C4.7)

 Component ID Component Name Development Owner

 C4.7 Service Orchestrator 50% ECC

GitLab Repository: https://github.com/eccenca/braine/tree/main/service-orchestrator

Containerized: N

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: Y – The Service Orchestrator synchronize

service metadata such as status between the Global Service Registry and the Resource

& Service Catalog.

Status Report:

The Service Orchestrator is under development being partially functional and integrated,

however it needs further testing and development.

https://github.com/eccenca/braine/tree/main/webclient
https://github.com/eccenca/braine/tree/main/service-orchestrator

52

6.8. Monitoring Dashboard (C4.8)

Component ID Component Name Development Owner

C4.8 Monitoring Dashboard 95% LUH

GitLab Repository: https://gitlab.com/braine/wp4-monitoringsystem-luh

Containerized: Y

Registered on BRAINE platform image registry: Y

Deployed as a pod and functional on BRAINE platform: Y

Integrated with other platform components: Y

Status Report:

The monitoring dashboard is a visualization system for the time-series metric data that

are stored in InfluxDB (and Prometheus). The dashboard comes with a pre-configured

set of gauges and charts that display various system metrics scraped from node-

exporter, including CPU, memory, disk I/O writing, and network traffic metrics. It is also

able to visualize additional time-series data generated by the UC applications. The

monitoring dashboard relies on the telemetry infrastructure components such as

scraper and database from WP3.

Each device (network switch, compute node), platform component (operating system,

scheduler, data lifecycle manager, etc), and use case may generate metrics and send

them to the telemetry database for storage and processing. The monitoring

dashboard can be tuned to extract general or specific (use case-related) metric data,

filter and aggregate them and then display charts, gauges, or other visual forms of the

data.

6.9. Data Placement (C4.9)

Component ID Component Name Development Owner

C4.9 Data Placement Framework 85% UCC

GitLab Repository: https://gitlab.com/braine/c49dataplacementframework

Containerized: Y

Registered on BRAINE platform image registry: N

https://gitlab.com/braine/wp4-monitoringsystem-luh
https://gitlab.com/braine/c49dataplacementframework

53

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: N

Status Report:

The first draft of data placement framework is almost completed, just improving it further

for overall better integration with the platform. Each UC may have its own types of

constraints on the data, the placement framework stores and uses these constraints

during selecting the data nodes for the data store requests generated by the UC. The

data placement framework works with modified Ozone.

This is an external data placement framework, built as an API in Java. This API uses

the available information for data placement. It keeps the record of the present state of

data allocation on various data nodes. The API also has the details of the constraints

on the data defined by the application. These constraints may be on node sharing,

hardware (Intel, AMD, ARM), selected data nodes, or some specific location, etc. All

these details are stored in config (XML and properties) files.

The modified Ozone requests this API to get the data node list to store the input data.

Based on the available information about this new data request (application, user,

persistent volume, etc.) and the stored information about the current allocation the data

placement API returns the list of data nodes to Ozone. Finally, Ozone uses these nodes

to store the data.

6.10. Healthcare Assisted Living (C4.10)

AI-driven Digital Twin solution for new digital ecosystems enabling Smart Healthcare in

Medical and Caregiving Centres Healthcare

Component ID Component Name Use Cases Owner

C4.10 Exporter for the metrics for the

UC1 application ‘AI-driven Digital

Twin solution for new digital

ecosystems enabling Smart

Healthcare in Medical and

Caregiving Centres’

UC1 IMC

GitLab Repository: private repository

Containerized: Y

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: Y

54

Integrated with other platform components: work in progress

Status Report:

The use ‘Healthcare Assisted Living: AI-driven Digital Twin solution for new digital

ecosystems enabling Smart Healthcare in Medical and Caregiving Centres’. The goal

of the application to create a digital twin of patients using microservices and continuous

collection and analysis of patient data. As part of the task of ‘WP4: User-oriented

utilization of the edge’ additional component was designed and developed as part of

the adaptation the Edge-based system for human-centric applications.

Key metrics required for the UC1 monitoring were defined and relevant for the UC1

application, monitoring tool— metric log connector in short ‘exporter’—was designed

and developed for the telemetry and application monitoring. The exporter for the metrics

for the UC1 application connects to the C3.6 and provides an endpoint "/metrics" and

sends GET metrics on request from the Prometheus server. A custom for UC1

application exporter is deployed as a pod and is functional on BRAINE platform.

The exporter written in Go language, deployed as pod in the system and added to the

service which will be accessed by Prometheus to provide the set of metrics (as required

by Prometheus' exporter implementation).

 The overall view of metrics for the UC1 application which runs on EMDC is as follows

(the number of actual metrics is bigger):

• Queue size for command execution, by using the label "queue_type" we make

a separation into several queue types. In doing so we can use one metric and

several labels to get a time series for all queues in the system;

• Command execution time in seconds;

• The number of imported values per execution;

• Number of indicator values calculated per command call;

• Number of object state values calculated in one call to the object state

calculation command;

• Number of active generators;

• Total number of registered users in the system;

• Total number of models in the system;

• Total number of sensors;

• Total number of data elements;

• Total number of indicators;

55

• Total number of indicator values for all indicators;

• Total number of sensor values for all sensors;

• The total number of values of the data items for all data elements.

6.11. Motif Discovery Tool (C4.11)

Component ID Component Name Development Owner

C4.11 Motif Discovery Tool 85% FS

GitLab Repository: https://gitlab.com/braine/wp4-mod-discovery-module-fs

Containerized: Y

Registered on BRAINE platform image registry: Y

Deployed as a pod and functional on BRAINE platform: Y

Integrated with other platform components: Y

Status Report:

The Motif Discovery Module of Motif Discovery Tool (MOD) enables the discovery of all

repetitive patterns of any size in any time-series data. The time-series data from the

perspective of BRAINE are sensory data from machines and devices on the shop floor.

The discovered patterns represent unique operations of the machine.

MOD is divided into several containerized modules, which can be deployed individually

on different host machines. Within WP4, the Discovery module and the Detection

module are being developed and implemented.

Components were tested on CNIT Braine Testbed. Currently, these components are

being integrated within the UC3 and Learning Module of Motif Discovery Tool (WP3).

6.12. vRAN with adjustments (C4.12)

Component ID Component Name Development Owner

C4.12 vRAN with adjustments 50% ISW

GitLab Repository: Link

Containerized: N

https://gitlab.com/braine/wp4-mod-discovery-module-fs

56

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: N – not yet. Only when the model testing

(prototype implementation) will be positively validated.

Status Report:

Here the PDCP acceleration with FPGA has been validated – but the results were not

satisfactory for ISW due to increase in latencies on the path CPU-FPGA for the PDCP

PDUs sent to the encryption engine in FPGA. The next steps are undergoing internal

discussions at the stage of D4.2 issue date and will be reported in the D4.3 deliverable.

6.13. AI platform profiling engine (C4.13)

Component ID Component Name Development Owner

C4.13 AI platform profiling engine 70% NEC

GitLab Repository: N

Containerized: Y

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: Y – UC2 video analysis application

integrated

Status Report:

The overall tool is integrated into applications by leveraging direct import in high-level

domain-specific machine learning frameworks, such as PyTorch and TensorFlow, and

therefore it can be shipped jointly with the application deployment units.

6.14. Network Telemetry Framework (C4.14)

 Component ID Component Name

Development

Owner

 C4.14 Flow telemetry agent 70% MLNX

GitLab Repository: N

57

Containerized: Y

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: Y – Info: Integrated with Flow P4 program

(C4.14.1)

Status Report:

- The flow telemetry agent was tested to add/remove selected traffic flow, the P4

tables are updated with the add/remove entries and telemetry events are sent

to Monitor & exported (C4.14.2).

- Event rate is still work in progress.

 Component ID Component Name

Development

Owner

 C4.14.1 Flow P4 Program 90% MLNX

GitLab Repository: N

Containerized: Y

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: Y – Info: Integrated with Flow telemetry

monitoring and exporter (C4.14.2) for streaming telemetry data

Status Report:

The P4 program code is done, HW tables are created and new flows can be

added to those tables.

 Component ID Component Name

Development

Owner

 C4.14.2 Flow telemetry monitor &

exporter

 70% MLNX

GitLab Repository: N

Containerized: Y

58

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

Integrated with other platform components: Y – Info: Integrated with Telemetry Adapter

for streaming telemetry data.

Status Report:

HW telemetry events are collected by the component and also exported to

remote collector via gRPC.

59

7. Conclusions

This document provides the status of BRAINE WP4 activities at end of Year 2.

This deliverable first reports on implementation of the data lifecycle management and the

distributed storage system. Then, it provides the specification and realization of a data

placement framework that is able to place data on nodes based on privacy and security

constraints. Futhermore, it reports on the AI application ensuring optimal hardware

utilization. This deliverable also provides the workflow definition language based on OWL-

S for modelling atomic, simple, and composite processes, successfully integrated with the

Kubernetes-compatible open-source workflow execution framework Argo. Finally, this

document reports on the P4 based programs for collecting and exporting telemetry records

from the switches.

