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1. Executive summary 

This report provides an update on the developments made in year-3 of the BRAINE 

project related to the design, prototype, and implementation of the BRAINE WP3 

components. This technical report presents the final outcome of WP3 (Part 2), which 

includes several sections and results.  

Specifically, the current deliverable highlights the following: 

• An update on the developments made in year-3 of the BRAINE project related to 

the design, prototype, and implementation of the BRAINE WP3 components.  

• The design of a novel Cognitive Framework and provides a list of all WP3 

software components’ details and links to their implementations in the BRAINE. 

• A recap of the architecture of the Forecasting Functional Block (FFB) and 

describes its flexibility in terms of models and metrics. 

• Highlights the challenges in deploying K8s in edge computing environments due 

to bandwidth limitation or bounded latency. The report presents a specifically 

designed and comprehensive framework to address these challenges that relies 

on SDN network controller, Service Level Agreement (SLA) broker, and 

Telemetry Collector. 

• The extension of the vocabulary to support workflow placement and description. 

• The design and implementation of the SLA Broker and its role in resolving 

system violations. 

Table 1.1 lists the components reported in D3.4 including partners, components’ names 

and Figure 1.1 shows an architecture diagram of where these components integrate as 

part of the overall BRAINE.   

Partner Components Deliverable 

LUH RL Scheduler - Training Agent (C3.6.1) D3.4 

RL Scheduler - Inference Engine (C3.6.2) 

RL Scheduler – K8s Scoring Plugin (C3.6.4) 

SSSA Forecasting functional block (C3.24) D3.4 

CNIT SDN network controller (C3.13) D3.4 

ECC Image Orchestrator (C3.11) D3.4 

BRAINE Schema for describing Services & 
Computational Resource (C3.23) 

DELL SLA Broker (C3.15) D3.4 

Table 1.1: Reported components 



 

 

 

Figure 1.1: An architecture diagram of where components integrate as part of the overall 
BRAINE 
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2. AI-based workload placement in an edge environment 

The overall architecture and the detailed description of the AI-based workload placement 
were presented in D3.2 last year. Here in this report, a short recap of the architecture is 
provided. Then, this document describes the data and the performance aspects of the 
work. 

2.1. AI/ML-based scheduler 

The BRAINE scheduler (available at: https://gitlab.com/braine/wp3-work_placement-luh/) 
customizes the default behavior of the Kubernetes scheduler by using deep 
reinforcement learning (DRL) in the node scoring step to optimize the node selection 
strategy for energy or waiting time reduction. To do so, it uses the following information 
in the RL state:  

• Pod features: The CPU, memory and disk requests of the pod.   

• Node features: The current resource utilization levels of the nodes across the 

selected resource dimensions (CPU, memory, disk).   

This information is then fed into a neural network that is trained to return the node 
scores.  The reward/objective to be optimized can be specified in the configuration file 
prior to the training process. A high-level illustration of the different components involved 
in the proposed RL-based scoring plugin is presented in Figure 2.1. 

 

Figure 2.1: Component diagram of BRAINE RL scheduler 

https://gitlab.com/braine/wp3-work_placement-luh/


 

 

1. Scheduler Trainer: is the training component that is deployed as a pod and is 

in-charge of training the neural network for various cluster sizes, training data, 

workload types, and optimization objectives. 

2. Scheduler Inference: is a containerized RESTful API Kubernetes service 
hosting the ML-based inference engine. The inference engine serves the 
prediction/scoring requests based on the trained models produced and deployed 
by SchedulerTrainer. 

3. BRAINE K8s Scheduler: is the Kubernetes scheduler that its scoring plugin has 
been replaced by the LUH developed custom scoring module. This component 
also runs as a standalone pod. 

4. Data Access Agent: is a standalone containerized Kubernetes service that as a 
component of the cognitive framework exposes a REST API and acts as an 
intermediary between the scheduler and the telemetry data provider or any other 
data source of interest for the AI/ML modules. 

2.2.  State and Model Description 

 

 

Figure 2.2: Representative state vs. Neural Network output 

The representative state is shown on the left-hand side, while the Neural Network output 
is shown on the right-hand side of in Figure 2.2.  The state is comprised of CPU request 
and Memory request as well as the Utilization rates for the resources on each node.  
The output score Q1 is Score of Machine 1, Q2 is the score for Machine 2, etc. The 
machine with the highest score is the chosen pod. 



 

 

2.3.  State space Rendering with multiple policies 

 

Figure 2.3: The trained model policy (top) vs. graph represents a greedy Utilization policy 
(bottom) 

In this example we are using 5 resource dimensions (CPU, memory, disk, bandwidth, 
and latency).  The y-axis represents the usage of each resource dimension. Figure 2.3 
represents the trained model policy.  while the bottom graph represents a greedy 
Utilization policy. 

The black bars represent a part of a machine which is inactive.  The idea here is that we 
have some maximum resource value available, and all machines will take up some 
percentage [100%,0%) of each resource dimension.  During training and testing each 
machine has each resource capacity randomly generated. 

The blue bars represent currently used up machine usage.  Note that a fully utilized 
machine will have the black bar plus the blue bar at 100%. Also, the red bar represents a 
newly placed pod. 

 

2.4. Dataset Description 

2.4.1. Definitions 

Table 2.1 lists the definitions used in the explanation of the training data. 

Term Definition 

Resource Utilization Here we are only considering normalized resource utilizations.  
1 is maximum, 0 is minimum.  

R∈R Resource “r” is an element out of the set of resources “R” 

One example of “R” could be [CPU, DISK, MEMORY] 



 

 

Spiked Resource: 
SR{r} 

A single resource chosen out of the set “R” which by definition 
will have a resource request and utilization which is 
significantly greater than the other resource dimensions 

SRP{r} Spiked Resource probability for resource “r”.  This would 
indicate the probability of selecting a specific resource. 

Non spiked 
resources: NSP 

I’ll use this to denote all resources which are not spiked.  So if 
Spiked Resource is denoted as SR{r}, All non-spiked 
resources is denoted as NSP{R\r} 

Spiked Pod : SP{r}  

  

SP{r} = Pod with resource dimension utilization “r” spiked. 

  

A spiked resource dimension will have a usage much greater 
than the others, aka. Spiked resource. So a pods spiked 
resource might have 5-20 times more utilization across its 
dimension when compared to all other dimensions. 

  

Spiked Pod set  : 
SPS{r} 

 

 

 

 SPS{r} = A group of Spiked Pods where all pods have the 
same spiked resource dimension “r”.   

  

This can vary in length. E.g. A SPS length of 20 could give 20 
pods with the CPU resource dimension at 5-20% utilization, 
while Disk and Memory will both have 0-1% utilization. 
Currently we are only training/testing with fixed SPS lengths. 

Pod Length Mu Value to control the Pod Length normal distribution mean 
value.  The Pod Length determines how long a pod lasts. 

Pod Length Sigma Value to control the Pod Length normal distribution spread 
value 

Table 2.1: Definitions used in the explanation of the training data 

Utilization magnitude: All resource dimensions are normalized to the interval of [0 .. 1].  

Each SP{r} (Spiked Pod for a specific resource) has a single SR (spiked resource), and 

many NSR’s (non-spiked resource).  The NSR’s have an independently and identically 

distributed random (IID) selection in the range of [0, 0.02], or [0, 0.01] depending on the 

test.  In other words, up to 2% or 1% utilization, respectively. The spiked resource will 

have an identically distributed (ID) random selection in the range [0.05, 0.2].  

Pod Durations: The Pod Durations are generated with a normal distribution with 𝝁 (Pod 

Length Mu) and 𝛔 (Pod Length Sigma). The 𝝁 value controls the normal distribution 
mean value, while the 𝛔 value controls the normal distribution spread value. Pod 
durations below 1 second are rounded up to 1 second. 

Training Random selection with removal: This ensures the least amount of overlap of 
spiky resources when iterating through the SPS. Assuming S is a copy of the set R, 
Procedurally for each SPS{r} we randomly select an element from the set of resources in 
S with removal.  This is continued over all resources until S is empty.  In which we reset 
S by performing S=R and continue back to random element selection with removal.  This 
can also be thought of as having a list of all resources, and picking out (and not putting it 
back) one at a time to use as the Spiky Resource in the SPS.  When your list is empty, 
just refill it and start over. 



 

 

Testing Random selection without removal: Doing Random selection with removal is 
not a realistic situation so for testing we must use a different strategy.  We have some 
Test results experimenting with Random element selection from R without removal.  
Therefore for each SPS{r} we randomly select an element from the set of resources in S 
without removing resources from the set.   

Resource probability selection (for without removal): The probability of a specific 
resource being selected for a SPS can be controlled so give weights to specific 
resources.  This enables us to test in environments that might have a single specific 
resource as a SR, e.g. mainly CPU intensive environments.  

We will denote the SPS’s SR (Spiked Pod Set’s  Spiked Resource) probability of being 
selected as RESOURCE(PROBABILITY), e.g. CPU(0.5) would represent that for each 
new SPS, there is a 50% chance that the CPU will be selected as the SR.  All 
probabilities must sum to one, so the “leftover probabilities” are evenly given to all the 
other resource dimensions.  We can also represent multiple resources, e.g. CPU(0.2), 
DISK(0.3) which translates to a 20% probability of selecting CPU as the SR, and 30% 
probability of selecting DISK as the SR.  

SPS example for understanding: Example 2-1 illustrates examples of training with 
Random resource selection for each Spiked Pod Sets (SPS), but with removal.  Given 3 
resource dimensions (CPU, Memory and Disk), and with SPS length of 4, that would 
mean that after 12 pods (4*3) we will have fully cycled through all resource dimensions 
as a Spiked Pod Resource.   Below we will illustrate one full training iteration through all 
resources, but with grouping the pods by SPS 

First Randomize resources -> [CPU, MEM, DISK] 

SPS set name Description 

A Train SPS{CPU} =Train with the 4 pods with SP{CPU}  

B Train SPS{MEM} =Train with the 4 pods with SP{MEM}  

C Train SPS{DISK} =Train with the 4 pods with SP{DISK}  

Example 2-1: Randomize resources -> [CPU, MEM, DISK] 

  

Now that we iterated though all resource we will randomize the resources again -> 

[MEM, CPU, DISK] (see Example 2-2) 

SPS set name Description 

D Train SPS{MEM} =Train with the 4 pods with SP{MEM}  

E Train SPS{CPU} =Train with the 4 pods with SP{CPU}  

F Train SPS{DISK} =Train with the 4 pods with SP{DISK}  

Example 2-2: Randomize resources -> [MEM, CPU, DISK] 

Table 2.2 visualizes SPS A, B, and C without grouping of each SPS. Spiked resources 

are highlighted. 

Below we illustrate the first table but without the SPS groupings so we can see each 

individual pod along with sudo-generated utilizations for each resource. 

  

 



 

 

SPS set 
name 

Spiked 
Resource 

CPU utilization % MEM utilization % DISK utilization 
% 

A CPU 8 1 1.1 

A CPU 5 1.5 0.1 

A CPU 15 2 0.8 

A CPU 19 0.5 0.1 

B DISK 0.9 0.01 6 

B DISK 1.7 0.8 17 

B DISK 0.7 1.2 11 

B DISK 1.01 0.9 5 

C MEM 1.1 7 0.4 

C MEM 1.9 17 0.7 

C MEM 0.9 10 1.7 

C MEM 0.4 20 0.9 

Table 2.2: illustration of SPS A, B, and C without grouping of each SPS. Red indicates the 
spiked resource dimension. 

 We repeat this process until the dataset is complete or training has terminated.  We 

then randomize all training/testing pod requests, as well as the pod duration lengths, 

while maintaining the SPS structure. 

 

2.5. Performance of the Optimization Objectives 

2.5.1. Definitions 

Table 2.3 lists the definitions used in the explanation of the reward calculation. 

Rewards 

Rewards for 
Increasing 

Pod 
Throughput 

Fragmentation 
Average 

Reward that calculates the fragmentation  average 
score across all machines.  Modification from the 
paper “Scheduling of Time-Varying Workloads 
Using Reinforcement Learning” 

  

Simple 
constant 

Every job scheduled just returns a plain 1. The 
learning happens from the agent trying to squeeze 
more jobs in the machine before the episode ends 

Rewards for 
Decreasing 

Energy 
Consumption 

Utilization 
Spread  

We take the utilization reward  

utilization = np.sum(np.power(usages, 3)) / 
len(usages) 

And Divide by the number of machines being used   



 

 

  utilization / number_of_machines_being_used 

This will be similar to utilization reward, but will have 
a stronger punishment for using more machines. 

Machine Job 
Fraction 
Reward 

np.log(Total Jobs Running now+ 1) / (Number of 
Machines used) 

Min Machine 
Reward 

(Number Machines Unused)/ (Total Number of 
Machines) 

  

Negative 
Machine 
Reward 

((Total Number of Machines) - (Number Used 
Machines))/(Total Number of Machines) 

This reduces the reward as more machines are 
used, but it is never negative. 

Table 2.3: Definitions used in the explanation of the reward calculation. 

Total Pods Before Full Cluster (∝Reduced Pod wait time): For now the metric we are 
monitoring is “Total Pods Before Full Cluster,” (TP). This metric is going to pre 
proportional to the following metrics: Throughput, Fragmentation Score,  and Reduced 
Pod Wait Time.  . Depending on what metric we want to show, the current TP metric can 
be transformed into any other metric if given the correct coefficients. For now I’ll show 
the TP metric, but later we can easily change it to the “Reduced pod wait time,”   

Workload: Workload type is similar to batch processing. In this case we are simply 
testing the efficiency of how the model stacks a given series of pods..  We are testing 
with long running tasks. While we are ending an episode as soon as the machine is full, 
if we were to account for pods waiting to be submitted then we could determine reduced 
pod wait time. 

Episode termination: An episode is terminated if the machine fills up, and cannot place 
the next pod.  This is helpful for the model to learn, because when combined with 
Prioritized Experience Replay (PER)  it will tend to learn from events that had higher 
rewards, i.e. episodes where the policy stacked the pods more effectively.  The task 
durations are set to infinite because we are highlighting the models ability to stack the 
pods in a better way when compared to the K8S-MA (Kubernetes most action, aka 
Greedy-Utilization). 

2.5.2. Optimization Objective: Waiting Time  

Run Parameters:  

• Spiked Resource (SR) Random Selection from Uniform Distribution (0.05,0.2] 

• Non Spiked Resource (NSR) Random Selection from Uniform Distribution (0.00,0.02] 

• Spiked Pod Set (SPS) length 40 

• 15 machines 

• 5 resource dimensions 

• Learning Rate 1e-4 

• Long Pod durations (no pods are removed during training or testing, only continuous 
stacking of pods) 

• 200 Test instances 
 

 



 

 

Percent improvement from Greedy Utilization 

Row 
ID 

Random 
Selection 
Process 

SPS 
Resource 
Selection 

Distribution 

Policy 
Simple 

constant 

Policy 
Frag 

Average 
Reward 

Policy 
Utilization 
Fraction 

Policy 
Min 

Machine 

Policy 
Machine 

Job 
Fraction 

1 

  

 With 
Removal 

Not a 
uniform 

distribution  
26.87 3.22 1.54 2.26 1.80 

2 

With 
replacem

ent 

Uniform 19.5 2.73 1.47 2.05 1.71 

3 

  

CPU(0) 

  

8.10 1.32 0.57 0.57 0.76 

4 
CPU(0.5) 8.11 1.35 0.44 0.95 0.64 

5 
CPU(0.8) 0.10 0.20 0.14 -0.01 0.32 

6 

CPU(1) 

  
-1.1 0.08 0.19 -0.03 0.22 

Table 2.4: Performance measurement under various configurations 

Table 2.4 presents the percent improvement from Greedy Utilization as following:  

Row 1: One way to look at the results would be with some kind of resource 

fragmentation score (RFS).  We can define resource fragmentation as a function that 

returns a high score when all resource dimension utilizations have close to equal 

magnitude, and a low score when the resource dimension utilization magnitudes vary 

greatly between each other.  We can see why a high RFS would be desired if we look at 

the extremes.  the lowest RFS score could be where CPU is at 100% utilization and 

Memory and Disk are close to zero.  In this situation a majority of the machine is not able 

to be used because the CPU is at maximum capacity and is blocking more pods from 

being able to be scheduled on the machine.  In the opposite situation a very high RFS 

score could mean that all CPU, Memory, and Disk are used at 100% and there are no 

wasted resources.  

The reason Row 1 constantly performs the best for all rewards comes down to  a policy 

that is able to produce a Resource Fragmentation Score that is on average higher then 

the other policies. Row 6 with CPU(1) is guaranteed to produce a very low FS.  While 

Row 1 gives the highest possibility for a high FS.  Because we are constantly changing 

the Spiky Resource dimension and because there is almost no repeating Spiky 

Resources between any two Spiky Pod Sets, it allows a model the maximum opportunity 

to stack Pods in clever ways to ensure a high FS.   



 

 

Row 2: This is slightly behind row 1 because in this dataset we allow for the 

chance of repeating Spiky Resources. 

Row 3 and 4: Interesting note that these rows are so similar. This is most likely a 

coincidence, and it just so happens for our given number of resources and machines 

that the policies tend to produce similar results.   

Never selecting the CPU (row 3) results in an episode termination when one of the other 

four resources are full across all machines.  I suspect that in row 4 the CPU resource is 

filling up (due to it being selected 50% of the time), and it just so happens to produce a 

set of pods that fills up the machines in a similar time manner when compared to row 3. 

We could test this hypothesis by including or removing a machine and see if we get 

different test results.  

Row 6 and 5 - These rows perform the worst across all resources. This is 

because if we are constantly selecting the CPU resource to be spiked, this will lead to 

the cluster quickly filling up the CPU across all machines and leaving the other resource 

dimensions close to empty.  The reason why the model is not able to perform better than 

the Greedy Utilization is because there are little to no opportunities for improvement.  If 

we can use an analogy from the game “Tetris” this would be like removing the ability to 

rotate a piece, you can move the Tetris pieces left and right, but without the ability to 

alter the rotation of the piece, there are only so many ways you can place the piece, and 

this handicap will result in a game over quickly.  The analogy doesn’t fit 100% because 

our trained models cannot “change” a Spiky Resource Dimension of a Pod request like 

we can with rotating a Tetris piece, but the generalization still stands.   

  Considering the Resource Fragmentation score  then CPU(1) will quickly fill up all 

machines (leaving all other resources unable to be used) and produce a low 

fragmentation score. 

 

Utilization Fraction, Min Machine, and Machine Job Fraction Policies: These 

policies performed not as well because they were trained to reduce energy performance.  

Simple constant Policy: This policy performs the best.  Most likely the reason it 

performs better is because we are simplifying the problem. Perhaps calculating the 

Policy Frag Average Reward ends up complicating things for the model during training. 

Sometimes the model is forced to make a decision which produces a low fragmentation 

score, i.e. placing a Pod on an empty machine. 

Regarding the CPU(1) score, I believe that if we had 500 to 1k Test instances, the 

Percent improvement from Greedy Utilization would be much closer to zero.  Later we 

can test this. 

2.5.3. Optimization Objective: Energy savings 

Energy saving is measured by an indirect indictor, the number of idle machines. We test 

a burst workload scenario in that a high number of short-lasting pods are submitted to 

the cluster. 

Parameters:  



 

 

• SPS length 40 

• 15 machines 

• 5 resource dimensions 

• Learning Rate 1e-2 

• Test Episodes: 500 

• Target update interval (when to update the second model) 
o Every 1000 steps 

• Pod Length Mu  
o Training: 150 
o Testing: 40 

• Pod Length Sigma 
o Training: 100 
o Testing: 10 

 

Table 2.5 shows the percent of fewer machines used from Greedy Utilization. 

Episode termination: The episode terminates after X number of pods have been 

submitted.  During testing we used 5k pods. 

Improvement Table: Positive percentage means an improvement, while a negative 

percentage means Greedy Utilization performs better.  Note we are only considering 

after the machines have been semi-filled.  Only considering the last 100 jobs submitted. 

   

Percent of fewer machines used from Greedy Utilization (last 1k jobs) 

Row 
ID 

Random 
Selection 
Process 

SPS 
Resource 
Selection 

Distribution 

Policy 
Simple 

constant 

Policy 
Frag 

Average 

Reward 

Policy 
Negative 
Machine  

Policy 
Utilization 
Fraction 

Policy Min 
Machine 

Policy 
Machine 

Job 
Fraction  

1 

  

 With 
Removal 

Not a 
uniform 
distributi
on  

-71.10 -14.13 2.82 5.48 -1.72 -4.77 

2 With 
replacem

ent 

Uniform -99.95 -12.25 2.06 0.29 -6.97 -5.33 

3 

  

CPU(0) 

  

-89.60 -7.05 0.89 0.42 -6.04 -4.10 

Table 2.5: Percent of fewer machines used from Greedy Utilization (higher is better) 

We cannot test rows CPU(0.5), CPU(0.8), and CPU(1) because the machines will almost 

instantly fill up.  The reason we are able to test with CPU(0) is because it allows for a 

random selection of the four other resources.  These four other resources provide 

enough varied Resource Spiking that the machines don’t fill up.  The reason we don't’ 

want the machines to fill us is because we are testing for a situation of “moderate cluster 

fullness”.  If only a single machine is being used, there is no room for improvement.  

Inversely if all machines are filled, there is often no room for improvement.  



 

 

Policy Utilization Fraction: This is the  best policy that is able to outperform the Greedy 

Utilization.  While the policies Min Machine and Machine Job Fraction are closer to 

Greedy Utilization, the policies trained for throughput (Simple Constant and Frag 

Average Reward) performed much poorer.    This policy is able to perform well because 

it is able to stack the pods in a more efficient manner allowing for a higher 

Fragmentation score.  If you have a higher Fragmentation score, then you will have 

more pods on less machines when compared to a lower Fragmentation score.  The 

Throughput optimized policy “Simple constant” is also trying to reduce the Fragmentation 

score but has no constraints with the number of machines it uses, so it tries to use up as 

many machines as possible. 

 



 

 

3. Improved scalability, predictability and stability for edge 
services 

3.1. Forecasting Functional Block architecture  

The Forecasting Functional Block (FFB) is a functional block devoted to the computation 
of forecasting values for given metric(s) of a Network Service. It behaves like a probe, 
which, consuming the current data related to the selected metric(s), provides a 
forecasted data stream according to the used model. 

The FFB has been designed to interact with other components of the BRAINE 

architecture, i.e., Distributed Knowledge-base system. It has been implemented in 

Python, relying on different standard libraries. 

 

In general, the FFB interacts with other BRAINE modules by primarily using the API: 

1. REST Server:  

i. receiving as input all the data required, to activate a forecasting job. The 

input data includes: the input/output Kafka topics, the model's name to be 

used and the message keys to be mapped over the model default 

features. 

ii. receiving new trained models, along with details about their default 

input/output features. 

iii. producing information about existing models, their descriptions and the 

active forecasting jobs. 

iv. stopping forecasting jobs. 

2. Kafka producer/consumer: receiving and producing data from/to Kafka topics 

according to the running forecasting jobs. The Kafka cluster belongs to the 

BRAINE Distributed Knowledge-base system.   

 

 

Figure 3.1: FFB High Level Software Architecture 

The FFB software architecture is shown in Figure 3.1 and it is composed by the following 

main blocks: 

• Forecasting Manager: this block is the core of the FFB. It consists in a python-

based project, that includes different modules with different roles: 

• The basis of the module is based on a Flask REST server that 

implements the APIs to other functional blocks. The details of the 



 

 

exposed/implemented APIs are detailed in Section 1.1. In general, the 

APIs allow to both start and stop a forecasting job, according to the input 

parameters, and to retrieve information regarding the active jobs. 

• A part of the module has been defined in define forecasting jobs. It is 

based on Keras Tensoflow library, where multiple forecasting algorithms 

can be utilized. Each forecasting job receives data from an instance of 

Kafka Consumer, able to retrieve current data related to the performance 

metric to be forecasted, streamed on a dedicated Kafka topic. Each 

forecasting job runs a specific model. In general, the model must be 

trained and uploaded in order to be used for forecasting purposes. The 

FFB can exploit forecasting algorithms based on classical time series 

analysis (i.e., double exponential smoothing, DES, and triple exponential 

smoothing, TES) and AI/ML-based. 

• The output of the forecasting job is then sent to a dedicated Kafka topic 

using an instance of Kafka producer, which is filled up with the forecasted 

metrics. 

• The overall state of the module is maintained in a dedicated database. In 

particular, all the details of the instantiated forecasting jobs are kept up to 

date, including the job_id, the input parameters, used for the forecasting 

job activation, the ad-hoc input/output Kafka topic, the selected model 

name and the downloaded model file. 

 

An example of workflow is described below: 

1. A model is pretrained and optimized using offline data collected for a specific 

aim. 

2. The model is then uploaded using the FFB using a specific endpoint available at 

its REST server. Along with it, a Json object is uploaded containing the default 

input/output features of the model and number of backward/forward metrics 

needed/generated by the model.  

3. Once a new forecasting job has to be activated, the specific REST endpoint has 

to be used. The information to be provided are: the input and output Kafka topics, 

the model to be used, and the input/output features name to be mapped over the 

default ones. 

4. After that, the FFB setups the DB according to the metrics to be stored and starts 

collecting the input features from the input topic. 

5. As soon as the number of collected metrics reaches the backward metrics 

parameter of that model, it starts producing forecasted metrics (the output 

features) into the output Kafka topic defined.   

 

 

 

 



 

 

3.2. Exposed Interfaces 

Figure 3.2 shows a swagger view of the implemented API at the Forecasting Functional 
Block. Following the details of the interfaces are shown. 

 
Figure 3.2: FFB API 

Forecasting Manager. The APIs exposed by this module enable the creation and the 
deletion of forecasting jobs. All the requests and responses follow the JSON format. The 
implemented methods are reported in Table 3.1. 
 

POST /forecasting/ Activate a new forecasting job. 

Input parameters: 

• intopic (string) 
• outtopic (string) 
• modelname (string) 
• inputfeatures (dict strings) 
• outputfeatures (dict strings) 
Responses: 

• 200: The job_id is returned. 
• 404: Forecasting job not started. 
• 400: Bad request  

GET /forecasting/ Retrieve the list of active forecasting jobs. 
Responses: 

• 200: The list of the forecasting jobs 
(“job_id”) is returned. 

GET /forecasting/(job_id} Retrieve the forecasting job details with the 
specified “job_id”. 
Responses: 

• 200: The details related to the forecasting 
job with “job_id” are returned. 

• 404: Forecasting job not found. 



 

 

DELETE /forecasting/(job_id} Stop the forecasting job identified with the 
job_id: 

• 200: The forecasting job with “job_id” is 
stopped. 

• 404: Forecasting job not found. 

POST /model/ Upload a new trained model. 

Input parameters: 

• modelname (string) 
• modeldescriptor (JSON): 

• modeltype (string) 
• definputfeatures (string[]) 
• defoutputfeatures (string[]) 
• backmetrics (int) 
• fwdmetrics (int) 

• description (string) 
• modelfile (file h5) 
Responses: 

• 200: The model is uploaded. 
• 400: Bad request  

GET /model/{model_name} Retrieve the model descriptor and the 
description of the model with the specified 
“model_name”. 
Responses: 

• 200: The details related to the forecasting 
job with “model_name” are returned. 

• 404: Model not found. 

DELETE /model/{model_name} Deletes the model identified with the 
“model_name” and stops any related jobs. 

Responses: 

• 200: The model with the specified 
“model_name” is removed. 

• 404: Model not found. 
Table 3.1: FFB Forecasting Manager APIs 

3.3. Usage Example 

This section shows an example of usage of the FFB.  
In this case, the FFB has been exploited to forecast data from the Mosaic 5G FlexRAN 
framework managing a 5G testbed. 
More precisely, the component consumes SD-RAN metrics from the dedicated Kafka 
topic, filled by the 3.4 Telegraf agent.  
The main feature to be forecasted was the Wide Band Channel Quality Indicator 
(WBCQI) in download for each UE. 
A model has been developed with the following configuration: 

• One convolutional layer with 128 filters, kernel size 9; 

• Two fully connected layers, with 64 filters and 1 output 
 
It takes in input the t-100 samples in the past, and forecasts t+4. The training data has 
been collected from the 5G testbed using Telegraf, while manually interfering with the 
channel quality. The training dataset reaches 30000 samples.  
 



 

 

After that the model has been trained, it has been uploaded onto the Forecasting 
Functional Block by using ForecastingManager API.   
 
The Figure 3.3 shows a plot comparing values for t (in green) from the input topic, the 
forecasted t+4 (in blue) from the output topic and the actual t+4 (in orange) of the 
WBCQI value. As you can see, the plot shows the forecasted metric against the actual 
ones while artificially degradating the signal.  
 

 
Figure 3.3: FFB Performance in 5G use case 

 
By using the Mean Squared Logarithmic Error (MSLE) among the actual and the 
forecasted value, the model reached an MSLE of 0.074. This can be further improved by 
using a larger dataset. 

3.4. FFB Conclusions 

The developed Forecasting Functional Block (FFB) achieves large flexibility in terms of 
models and metrics to be forecasted. Thanks to the defined API, new forecasting jobs 
can be deployed in any moment as far as a model is available. Moreover, this also 
allows to practically test new versions of a model by executing multiple jobs at the same 
time.  A component with such flexibility at the edge can offer a rapid deployment of new 
services and functionalities. 



 

 

4. SDN controller (CNIT) 

The standard K8s platform uses a flat network structure that enables Pods to 
communicate with each other on their hosting cluster. Such flat K8s network, also called 
Pod network, does not account for network constraints in terms of limited bandwidth or 
bounded latency. For this reason, deploying K8s in edge computing environments to 
serve latency/QoS-critical applications requires a specifically designed and 
comprehensive framework. In particular, specific workflows are needed to efficiently 
interface K8s with various components such as SDN network controller, Service Level 
Agreement (SLA) broker, and Telemetry Collector.   

4.1. Telemetry workflow 

This section presents a comprehensive framework enabling the SDN controller to 
interact with the K8s scheduler for enabling communication among pods and services 
deployed on different servers considering the traffic encapsulation applied by the 
networking tools typically adopted by K8s, such as the “flannel” framework operating in 
the VXLAN mode. The proposed closed-loop also includes a telemetry system enabling 
effective SLA monitoring and enforcement. Finally, the framework encompasses an SLA 
broker interfaced with the telemetry system triggering the SDN controller to perform 
automated network adaptation upon detection of network performance degradation.  

Figure 4.1, illustrates the demonstration workflow as presented in the OFC conference 
demo Zone in March 2022. The demonstration has been realized using the CNIT cluster 
deploying a set of pods on two different servers that are interconnected through a 
packet/optical network using P4-based switches and optical nodes. 

 

Figure 4.1: BRAINE EMDC main components and closed-loop telemetry workflow.  

The demonstration workflow realizes the following steps: Step 1: The scheduler places 
the Pods with their own requirements on different nodes/locations on the cluster. Step 2: 
The K8s scheduler retrieves the network parameters of the deployed Pods. Step 3: the 
K8s scheduler submits a connectivity request to the extended SDN controller feeding the 
specifically designed ONOS REST interface with the network parameters of the 
deployed Pods. Step 4: The SDN controller initiates the configuration of the connectivity 
including both the packet network based on P4 equipment (using P4-Runtime protocol) 
and the disaggregated metro optical network based on OpenConfig and OpenROADM 



 

 

yang models (using Netconf protocol), in the same step the SDN controller activates the 
post-card telemetry on the traversed P4 switches. The telemetry could be also 
started/stopped in a subsequent step. Step 5: Once the connectivity is configured the 
traffic starts to flow into the network. Step 6: The related postcard telemetry is generated 
toward the Telemetry Collector. Step 7: When the SLA broker, that is continuously 
monitoring the telemetry database, detects a service level degradation (e.g., increased 
packet loss or latency) it triggers a service upgrade request to the SDN controller using a 
dedicated method of the designed REST APIs. Step 8: In turn, the SDN controller 
modifies the network connectivity parameters in accordance with the received request 
(e.g., find an alternative path on the network).    

4.2. SDN controller applications 

The BRAINE SDN network controller is based on ONOS [ONOS]. Figure 4.2 represents 
the components specifically developed for BRAINE and utilized in this work to implement 
traffic forwarding and in-band telemetry, i.e., the BRAINE app and the BRAINE P4 app. 

  

Figure 4.2: Internal architecture of the ONOS apps developed for the BRAINE project, 
including relations with ONOS core services, drivers and protocols. Red connectors 
represent relations implemented within this work, blue connectors represent relations 
already present in the ONOS core. 

4.2.1. The BRAINE app  

 This application implements a set of functionalities exposed through REST APIs, 
enabling the interaction with Kubernetes, and the SMUI. Also, the same functionalities 
can be manually accessed through a set of CLI commands. Moreover, the application 
utilizes the ONOS core services to enable the deployment of point-to-point connections 
between pods running in different worker nodes of the cluster. The two main 
functionalities supported at the data plane by the BRAINE app are: i) connection 
management (i.e., add/delete/modify), where each created connection can be specified 
up to the transport level (i.e., TCP/UDP ports); ii) activation of telemetry on selected 
active connection(s).   

To support the aforementioned features, the BRAINE app is composed of several 
components (see left side of ). In particular the application includes: i) two databases 
where connection and link state information are stored; ii) a routing module that performs 
redundant routing of requested connections and interacts with the ONOS intent service; 
iii) an intent listener that allows the application to react in case of network events 
affecting established connections; iv) a logger for tracing and debugging. Moreover, the 
BRAINE app supports a set of accessories features to facilitate the interaction with the 
network and the gathering of network state information. Specifically, the features 



 

 

supported by the app can be grouped in four categories: connections related commands, 
device related commands, host related commands and link related commands.  

4.2.2. The BRAINE P4 app 

The companion BRAINE P4 application has been developed to program the specific P4 
pipeline to be used in the data plane switches. This application has two main roles: i) 
enabling the match of header field encapsulated within VXLAN tunnels; ii) activating the 
postcard telemetry on specific traffic flows. The first objective is achieved through the 
implementation of a dedicated pipeline (described in next section). For the latter 
objective, the application exposes a REST API that is dynamically consumed by the 
BRAINE app when a telemetry activation request is received from the orchestrator.  

 The internal architecture of the BRAINE P4 application is represented on the right side 
of Figure 4.2. It includes the pipeline loader component which loads the P4 pipeline 
description via the P4Runtime protocol upon the discovery of P4-based switches. Once 
the request to activate a new postcard telemetry on a specific traffic is received through 
the REST interface, the Postcard telemetry manager identifies the devices traversed by 
the flow and sends them the flow rules to enable the postcard via the pipeline interpreter. 
Since the pipeline interpreter is the only component that is aware of the pipeline 
structure (e.g., number of tables and supported matching fields per table) it is also used 
for translating into flow rules the output of the intent service created to forward traffic. 
The statistic discovery component collects traffic related information from the P4-based 
devices to be visualized in the ONOS GUI (e.g., counters associated to flow rules). 
Finally, the logger component facilitates tracing and debug. 

 The BRAINE P4 app then relies on the Bmv2 P4 driver included in the master ONOS 
master distribution that has been demonstrated to be fully functional to perform the 
connection to P4 devices and to install all the required flow rules using the P4 Runtime 
protocol. 

4.3. P4 pipeline implementation 

The developed P4 program is written in P416 for the target architecture v1model 
[V1Model] that includes a parser and two pipelines (ingress and egress). With the 
proposed approach the P4 device can be programmed by the SDN controller to forward 
both traffic exchanged among pods (i.e., encapsulated using VXLAN) and traffic 
exchanged among host machines (i.e., not encapsulated). Moreover, the controller can 
activate in-band telemetry (i.e., postcard telemetry, INT-XD) on selected traffic flows, 
that can be specified up to transport layer details (i.e., TCP/UDP ports). 

 The proposed architecture is working only in conjunction with the Flannel CNI plugin, 
that is the one selected to be used in all BRAINE deployments. However, it is easily 
extensible to other tunneling techniques applied by different CNI plugins, only requiring 
the upgrade of the parser module. 

Each pipeline is composed by a number of tables, operating with a match/action policy. 
Each table supports a specific set of keys and actions. In each table, a ternary match 
policy is used where the selected mask allows to ignore a key or apply an exact match. 
Some keys are packet header fields, while others are custom metadata that are 
associated to the packet during the parsing procedure. 

  



 

 

4.3.1. P4-based matching of pod-to-pod traffic 

 The parser, detailed in Figure 4.3(a), is the first module of the ingress pipeline, as 
shown in Figure 4.3(b). While the packet passes through the parser stages, its header 
fields and the metadata fields are gradually filled. The first stage of the parser writes the 
ingress port index into the specific metadata field. Then, the Parse Packet IO stage is 
executed only for packets received from the CPU port (i.e., P4 Runtime packet_out 
messages received from the controller) to retrieve the packet_out header. The Parse Eth 
stage extracts the Ethernet header, moreover it fills the fields 
local_metadata.l2_src_addr and local_metadata.l2_dst_addr} with the values contained 
in the MAC source and destination fields. Then, in case of IP packets, the Parse IPv4 
stage is executed parsing the IPv4 header, and filling the metadata fields 
local_metadata.l3_src_addr and local_metadata.l3_dst_add with the IP source and 
destination addresses. Subsequently, the packet is sent to one of the Parse TCP/UDP 
stages where the metadata fields local_metadata.l4_src_port and 
local_metadata.l4_dst_port are filled.  

  

Figure 4.3: Proposed pipeline architecture for traffic forwarding and telemetry: a) Parser; 
b) Ingress pipeline; c) Egress pipeline. 

If the UDP destination port is 8472, it means that the packet belongs to a pod-to-pod 
traffic flow encapsulated within a VXLAN tunnel by Flannel. In this case, the Parse 
VXLAN stage is executed parsing VXLAN header, subsequently IP and TCP/UDP 
headers are parsed by Parse Internal stages. During these stages, the aforementioned 
local_metadata.* fields are overwritten with the corresponding fields enclosed in the 
internal headers. This way, if the packet is encapsulated in a VXLAN tunnel, the ingress 
pipeline will match the internal header fields, thus enabling pod-to-pod traffic forwarding. 

As illustrated in Figure 4.3(b), after parsing, the packets are forwarded to the ingress 
pipeline and processed by table0 where the egress port is assigned based on the flow 
rules installed by the SDN controller.   

4.3.2. P4-based postcard telemetry implementation 

 The subsequent tables in both the ingress and the egress pipelines are used to 
implement the postcard telemetry. The Postcard_Telemetry table, see Figure 4.3(b), 
matches on metadata fields and is intended to contain flow rules for matching each 



 

 

traffic flow requiring postcard telemetry. Two actions are supported: activate_postcard 
and nop. The action activate_postcard is executed for each matching packet (i.e., to 
packets belonging to traffic flows for which the SDN controller has activated the 
telemetry), setting a specific metadata field (i.e., meta_activate_postcard) that is later 
evaluated by an if condition to clone the packet using the cloneI2E external feature. If a 
packet is not matched, the default action nop is executed resulting in the packet 
forwarded to the egress pipeline without cloning. The cloned packet will be manipulated 
in the egress pipeline to generate a report packet.   

 The egress pipeline is illustrated in Figure 4.3(c). All the metadata fields 
local_metadata.* must be re-initialized because P4 does not allow the propagation of 
custom metadata from the ingress pipeline to the egress pipeline. No actions are applied 
to the original packet that leaves the switch through the port assigned in table0. Instead, 
the cloned packet is processed by the two tables: int_insert and generate_report. The 
former table, with a null default action, applies the action init_metadata to matching 
packets. This action is the one that actually retrieves the information to be included in 
the report message that is written in the local_metadata.postcard_* fields. 

The latter table generates the in-band telemetry report message using the action 
do_report_encapsulation manipulating the cloned packet. More in detail, the header of 
the cloned packet is modified as following. The Ethernet and IP source addresses are 
set to the local switch values, while the destination addresses are set to the telemetry 
collector values. The UDP source and destination ports are set to a specific value to 
easily recognize report packets at the telemetry collector. Finally, the report header is 
added as UDP payload that includes the metadata retrieved in the previous table, i.e., 
switch_id, flow_id and all other metadata required by the SDN controller using the 
instruction_mask as defined in [INT]. 

 

4.4. Experimental demonstration results 

4.4.1. Experimental setup 

The experimental testbed encompasses both computing and networking resources. 
Computing resources are deployed on two dedicated servers, i.e., EMDC1 and EMDC2 
in Figure 4.4. The hardware of both servers is a DELL PowerEdge R740, 56 CPUs Intel 
Xeon Gold 6238R @ 2.20GHz, 256 GB RAM. Three virtual machines (VMs) are 
deployed in EMDC1, while two VMs are deployed in EMDC2. One of the VMs deployed 
on EMDC1 hosts the management and control software including the Kubernetes 
master, the ONOS SDN controller, the telemetry collector and the telemetry and 
monitoring platform. The other VMs act as Kubernetes worker nodes, where each node 
runs a number of pods (i.e., each pod encompasses a plain Ubuntu 20.04 distribution 
with basic networking tools). The Telemetry and Monitoring platform includes the 
telemetry database deployed into an influxdB container, and the SLA Broker, 
implemented as a set of configurable queries and threshold-based alarms through 
dedicated Grafana panels. 



 

 

 

Figure 4.4: Experimental testbed encompassing computational and networking resources. 

Networking resources encompass five P4-based switches, all of them emulated using 
Bmv2. Switches S1, S2, S3, S4 are emulated on a dedicated DELL server (Intel Xeon 
E5- 2643 v3 6-core 3.40 GHz clock, 32 GB RAM) using physical Ethernet interfaces. 
Switch S5 is emulated by deploying a dockerized Bmv2 on a Mellanox SN2010, running 
SONiC. The traffic report generated by the network nodes is received by the Telemetry 
Collector, hosted by the Kubernetes master node. As depicted in Figure 4.4 the report 
packet contains: the switch_id field that identifies the switch, the flow_id field that 
discriminates traffic flows, Ingress_Timestamp and Egress_Timestamp needed to 
evaluate the hop latency. 

4.4.2. Experimental results 

1) Pod traffic forwarding validation 

This section functionally validates the proposed solution to process the traffic exchanged 

between a pair of Kubernetes pods. Specifically, the traffic is generated between two 

pods respectively deployed on node EMDC1 and EMDC2, thus traversing the P4-based 

network. Figure 4.5 illustrates the Wireshark capture, including the VXLAN 

encapsulation and the protocol stacking as applied by the Flannel CNI plugin. 

Specifically, the ping application is used to generate ICMP request/reply messages 

between pod 10.244.1.2 deployed on worker node 1 and pod 10.244.4.2 deployed on 

worker node 4. The packets are captured in VM Worker 1 on interface 192.168.42.2. 

The presence of both ICMP request and reply proves that packets are correctly switched 

by the network in both directions. The experienced round-trip time is around 5 

milliseconds. 



 

 

 

Figure 4.5: Wireshark capture of ICMP traffic between two pods.  

Figure 4.6 shows a screenshot of the ONOS web GUI illustrating the flow rules installed 

in switch S1 where the rules counters show that the traffic exchanged between the two 

pods is correctly matched. 

 

 

Figure 4.6: ONOS view of rules installed on switch S1. 

2) Pod traffic telemetry validation 

This section functionally validates the whole telemetry workflow as described in Fig. 

AAA. Specifically, two separate traffic flows are activated between two different pairs of 

pods: flow IDs 250 and 123. The two flows consist of five parallel TCP sessions 

generated with the iperf3 application. Telemetry is active in both flows; however, the SLA 



 

 

Broker is configured to generate the feedback to ONOS (step 8 in Fig. AAA) only for flow 

250. 

 

Figure 4.7: Monitoring Platform: view of switch latency for traffic flows 250 and 123. 
Latency [ns] as a function of experiment time. 

Figure 4.7 reports the latency data as collected by the SLA Broker panels during the 

network reconfiguration. Both flows are initially routed along the path S1, S3, S4, S2, 

thus both plots report four latency lines, one per traversed switch. At time t0 switch S3 

transmission rate is manually degraded, thus increasing the switch latency for both 

flows. The SLA Broker performs a threshold-based control over the per switch latency of 

flow 250 and triggers an alert if the degradation persists for 4 seconds. This behavior is 

reflected in the SLA Broker panel as depicted in Figure 4.7. In the actual experiment, 

degradation is detected at t1 and the alert is triggered back to ONOS at t2. As described 

in the previous sections, ONOS reacts by rerouting the affected flow (i.e., flow 250) on 

path S1, S5, S2, i.e., after t2, Figure 4.7 reports the latency of those switches. It is worth 

noting that S5 is characterized by a higher latency compared to other switches; indeed, 

S5 is emulated on less performance hardware. Conversely, flow 123 is not involved in 

the reconfiguration, showing that the implemented framework is able to select the single 

traffic flow. 

 

Figure 4.8: Flow bitrate: (a) flow 250; (b) flow 123. Mbps as a function of experiment time. 

The telemetry workflow experiment has been repeated 10 times collecting also the 

achieved end-to-end bit-rate of both flows. The results are illustrated in Figure 4.8, 



 

 

including ten cyan lines reporting the specific result for each experiment and a single red 

line reporting the average trend. Specifically, Figure 4.8(a) is related to traffic flow 250, it 

shows that after t0 the rate is degraded, then it is partially recovered at time t2 when the 

traffic is switched on the alternate path. It is worth noting that rerouting the traffic does 

not guarantee the recovery of the overall bit-rate. In fact, the recovery path includes 

switch S5 emulated on a less performing hardware with limited traffic capabilities. Figure 

4.8(b) is related to traffic flow 123 that is not involved in the reconfiguration, thus after t0 

the bit-rate results to be degraded and never recovered. Figure 4.8(a) shows that the 

whole workflow takes about 6 seconds to be performed (i.e., t2 − t0). However, most of 

this time is expended within the telemetry and monitoring platform (i.e., SLA Broker) as a 

result of our configuration to trigger the alert.  

 

Figure 4.9: Auxiliary panel view of switch latency for traffic flows 250 experiencing 
network failure recovery excluding the Telemetry and Monitoring Platform. Latency [ns] as 
a function of experiment time. 

This time could be reduced by configuring the SLA Broker with higher SLA checking 

rates on the InfluxDB filled by the Telemetry Collector. Therefore, to better evaluate the 

achievable performance of the system, we have measured the re-configuration time 

excluding the telemetry and monitoring platform from the workflow, i.e., the feedback to 

the ONOS controller is directly generated by the Telemetry Collector. Figure 4.9 reports 

the latency data collected by an auxiliary Grafana panel during the network 

reconfiguration, when the reconfiguration is triggered directly by the Telemetry Collector 

(i.e., thus excluding the influxdB and the SLA Broker). The experiment has been 

repeated 10 times and the average time for performing the reconfiguration is 1.95 

seconds that includes: the detection of the latency degradation at the Telemetry 

Collector, all control plane procedures performed in ONOS (e.g., computation of an 

alternate path), and P4 Runtime message exchange towards the involved switches. 



 

 

5. DevOps for edge computing supporting AI 

This deliverable has presented the main activities in year-3 of the BRAINE project 
related to the design, prototype and implementation of the BRAINE WP3 components. 
The deliverable dedicated a specific section for each task to show its main contributions. 
The illustrated achievements include components functionalities and development 
status. Moreover, the design of a novel Cognitive Framework is described in this 
document. Finally, a list of all WP3 software components’ details and links to their 
implementations in the BRAINE Gitlab account is also provided. 
 

Over the last interaction, we have extended the vocabulary to support workflow 
placement and description. The schema was extended to support Images descriptions 
through Docker deployments descriptor format (Listing 5.2). Services, using Kubernetes 
deployment descriptors (Listing 5.1) and Workflows using Argo description language 
which is an extension of Kubernetes deployment description language itself. We call 
those descriptions manifest. By relying on an attribute called manifest we allow the use 
of the same model later to other existing description languages. Figure 5.1 gives an 
overview of the vocabulary developed for resource management and service 
deployment. 



 

 

 

Figure 5.1: Excerpt of BRAINE schema (lift) highlighting Service, Workflow and Image 
Descriptors.    

kind: Pod  

metadata:  

   labels:  

     run: helloworld  

   name: helloworld  

spec:  

   runtimeClassName: rune  

   containers:  

   - command:  

     - /bin/hello_world  

     env:  



 

 

     - name: RUNE_CARRIER  

       value: occlum  

     image: helloworld  

     imagePullPolicy: IfNotPresent  

     name: helloworld  

     workingDir: /run/rune  

EOF  

Listing 5.1: Kubernetes manifest example. 

 

FROM alpine   

CMD ["echo", "Hello BRAINE!"]  

Listing 5.2: Image manifest example. 

In addition, we have also extended the vocabulary (Figure 5.2) allowing users to add 
services, images and workflow register endpoints to the BRAINE knowledge graph. This 
extension allows users to directly interact with the endpoints without the necessity of 
using the Service or Image Orchestrator. This approach significantly simplifies the 
deployment and management. 

 
 

 

Figure 5.2: Excerpt of BRAINE vocabulary lift highlighting Workflow, Image and Service 
Registries. 

Workflow Definition For being open source and tightly integrated with Kubernetes, Argo 
was chosen as the service workflow execution framework. In addition, it offers all 
required functionalities in the project scope and users can describe workflows in a 
declarative way using manifests in a similar fashion to those of Kubernetes and Docker. 

 

With the addition of the Argo framework to the BRAINE software stack, it is possible to 
define workflows through Argo workflow definition language (Listing 5.3). Argo can be 
easily coupled with the overall project architecture and can be easily managed by the 
user as well as by the system. Argo’s tight integration with Kubernetes, its declarative 
workflow definitions, and its support for event processing make it the most suitable 
candidate. It is likely that effort will be required to integrate Argo into the BRAINE 
architecture and develop its functionality further; but this is preferable to building a 



 

 

custom BRAINE solution from scratch, and may provide useful contributions to the 
opensource solution.  The full vocabulary is available under Creative Common CC-BY-
4.0 license at https://github.com/eccenca/braine-vocab. 

  

apiVersion: argoproj.io/v1alpha1 

kind: Workflow 

metadata: 

  generateName: hello-world- 

  labels: 

    workflows.argoproj.io/archive-strategy: "false" 

  annotations: 

    workflows.argoproj.io/description: | 

      This is a simple hello world example. 

      You can also run it in Python: https://couler-proj.github.io/couler/examples/#hello-
world 

spec: 

  entrypoint: whalesay 

  templates: 

  - name: whalesay 

    container: 

      image: docker/whalesay:latest 

      command: [cowsay] 

      args: ["hello world"] 

Listing 5.3: Example of workflow definition.  

Registry Interfaces: In addition to the schema extension, we have also further 
developed a BRAINE management webclient that allows the management of services, 
images, workflows and their respective registries (Figure 5.3). Figure 5.4 displays the 
Docker Image register window in CMEM, it allows users to register Docker images for 
deployments. Figure 5.5 displays the Service Profile Register Window that allows the 
registering of Services through Kubernetes Deployment description files. In both 
windows there is an attribute manifest which is used to either register Kubernetes 
Deployment descriptor in case of Service Profile and Docker Image Descriptor in case of 
Docker Images.   

  

https://github.com/eccenca/braine-vocab
https://couler-proj.github.io/couler/examples/#hello-world
https://couler-proj.github.io/couler/examples/#hello-world


 

 

 

Figure 5.3: BRAINE webclient. 

 

 

 

Figure 5.4: BRAINE webclient Image Registry Web Interface. 

 

  



 

 

 

Figure 5.5: BRAINE webclient Image Registry Web Interface. 



 

 

6. Monitoring and SLA broker incorporation for transparency 
and enforcement 

To resolve system violations, the SLA Broker plays a crucial role. This section provides 
an overview of the SLA Broker requirements for the BRAINE system, describes the 
components that make up the BRAINE SLA Broker system, and demonstrates the 
workflows involved in the process. 

6.1. System requirements 

The design and development of the BRAINE SLA Broker considered the following 
system requirements: 

• Policy-based system: A single-metric system (e.g., bandwidth) for failure 

detection and handling may not be sufficient to properly resolve a failure. Context 

is essential for system diagnosis, as different contexts may require distinct 

solutions. A policy-based system enables the capture of a system violation 

context based on several metrics and conditions. A BRAINE SLA Broker policy 

consists of one or more rules, with each rule monitoring the violation of a metric 

performance over a defined period. This includes the type of metric aggregation, 

the number of violations within a defined period of time, the trigger type, and the 

violation threshold. The violation type can be either one metric violation to trigger 

the actuation or a combination of metric violations to trigger the actuation. Table 

6.1 illustrates the fields of a rule, which can be generated using a POST REST 

API request to “/rule/”. Note that a rule is only associated with one policy.  

 

Field Type Description 

ID UUID A returned value for a successful POST 
request. The ID field can be used later to 
retrieve, update, or delete the rule. This 
value is system generated and will be 
ignored if submitted for a new rule. 

Name String Name of the rule. 

OwnerID UUID Owner ID should match the owner ID of 
the associated policy 

Description String A description for the rule. 

Parameter Dictionary Consists of the “endpoint”, type of 
measurement provider (i.e., Prometheus, 
InfulxDB, RESTapi, or message bus), field 
name. 

Operator String It is one of the following operators “>”, “<”, 
“>=”, or “<=”. This field is used as 
indication to interpret the threshold. 

Period Integer Period is in seconds. It represents the 
considered window to apply the rule. For 
instance, Period equals 600s means the 
window that the SLA rule is applied on is 
the last 600 seconds (i.e. 10 mins).  

Occurrence Integer The number of violations in the period to 



 

 

trigger a rule violation. 

Interval Integer Interval is in seconds. It is the time 
interval to pull the metric read/reads from 
an endpoint. 

Threshold Double The threshold value 

TriggerType Boolean “0” or critical means that the actuation can 
be trigger only by violating this rule. “1” or 
non-critical means that a number of this 
type of rule (more than one should be 
defined in the policy) need to be violated 
to trigger an actuation.   

PolicyID UUID The policy that a rule is associated with. 

Table 6.1: Fields of the SLA rule 

Table 6.2 illustrates the fields of an SLA policy entry, which can be generated 
using POST RESTapi request to “/sla-broker/”. 
 

Field Type Description 

ID UUID A returned value for a successful POST 
request. The ID field can be used later to 
retrieve, update, or delete the policy. This 
value is system generated and will be 
ignored if submitted for a new policy. 

Name String Name of the policy. 

OwnerID UUID Owner ID 

Description String A description for the policy. 

RuleThreshold Integer The number of rule type “1” that required 
to trigger an actuation. 

Table 6.2: Fields of the SLA policy 

Table 6.3 illustrates the fields of an actuation entry, which can be generated 
using POST RESTapi request to “/actuation /”. 
 

Field Type Description 

ID UUID A returned value for a 
successful POST request. The ID 
field can be used later to retrieve, 
update, or delete the actuation 
entry. This value is system 
generated and will be ignored if 
submitted for a new actuation 
entry. 

Name String Name of the policy. 

OwnerID UUID Owner ID 

Description String A description for the policy. 

Endpoint Dictionary It consists of the URL, 
communication type (i.e., 
RESTapi or KAFKA), KAFKA 



 

 

topic. 

Message Dictionary/String/Value Dictionary lists the UUID of 
violated rules. String and value 
are fixed and provided by owner. 

Table 6.3: Fields of the SLA actuation 

• Metric endpoint: Metric values can come from several sources, including the 

producer itself and aggregation points of a telemetry system. The BRAINE 

Telemetry system provides several methods for retrieving telemetry values using 

PIGPI, where PromQL and InfluxQL can be used to retrieve the measurements. 

In some cases, the BRAINE Telemetry system also allows for telemetry retrieval 

from the KAFKA bus. 

• Metrics analysis: Telemetry data needs to be aggregated and analysed over a 

period to produce output that can be relied upon to trigger actuations. The 

analysis may consider patterns, a single metric, or multiple metrics. 

• Actuation approaches: Violation of an SLA Broker policy results in one or more 

actuations to handle the SLA policy violation. The actuation can be as simple as 

sending an email to the owner or administrator about the violation. Additionally, 

the actuation can be system-accommodated, such as scaling in or scaling out the 

microservice deployment. Finally, the actuation can be application-specific, which 

requires the microservice owner to provide the customized message format and 

content to the SLA Broker. 

6.2. System Components 

6.2.1. SLA Broker Manager 

 

Figure 6.1: the workflow for successfully instantiating SLA Analyzer and Manager 
instances 

Figure 6.1 illustrates the workflow for successfully instantiating SLA Analyzer and 
Manager instances. Firstly, the BRAINE Authoring Tool requests the blueprint for 
creating SLA rules, actuations, and policies from the BRAINE Blueprint Inventory (steps 
1-2). Secondly, the BRAINE Authoring Tool customizes the SLA policy request based on 
the SLA agreement and submits it to the BRAINE SLA Broker (step 3). Thirdly, the 
BRAINE SLA Broker validates the telemetry and actuation endpoints (steps 4-9). 
Fourthly, the SLA Broker requests the blueprints for the SLA Analyzer and Manager from 



 

 

the BRAINE Blueprint Inventory (steps 10-11). Then, the SLA Broker customizes the 
Analyzer instance to collect the targeted telemetry from the proper endpoints. The 
customization of the Analyzer instance also includes customizing the communication 
between the SLA Analyzer and Manager instances. Later, the SLA Broker requests the 
related deployment and services from the BRAINE scheduler (steps 12-13). Finally, the 
BRAINE SLA Broker confirms the deployment of the SLA Broker related instances to the 
BRAINE Authoring Tool.  

 

Figure 6.2: An example of an SLA Broker deployment 

Figure 6.2 shows an example of an SLA Broker deployment. In the figure, the SLA 
Analyzer consists of three metric scripts that pull telemetry readings from the Telemetry 
System based on the interval fields in each rule submitted to this policy. In case of a rule 
violation, the related script sends a notification message to the SLA Manager about the 
violation. Based on the type and number of violated rules, the SLA Manager instance 
communicates with the actuations.  

 

6.2.2. SLA Analyzer instance 

 

Figure 6.3: SLA Analyzer deployment 



 

 

Figure 6.3 illustrates the deployment of Analyzer instances. As shown in the figure, 
Analyzer instances are associated with persistent storage to ensure system monitoring 
in case of Analyzer failure or crash. In the event of Analyzer failure, the scheduler 
instantiates another Analyzer and mounts it to the persistent storage. An Analyzer 
instance keeps a copy of all measurements and related analyses on the persistent 
storage. Moreover, the figure shows that each rule is monitored by one script and that 
the logs and readings are stored on the persistent storage.     

6.2.3. SLA Manager Instance 

The SLA Manager Instance is responsible for calling actuations based on the violations 
of the rules reported by the SLA Analyzer. As mentioned earlier there are two types of 
reactions for rule violation. 

 

Figure 6.4: Reporting rule violation for an SLA Manager instance 

Figure 6.4 shows the workflow of a reported rule violation for an SLA Manager instance. 
In the case of a critical violation, the SLA Manager instance calls the actuations 
immediately. However, in the case of a non-critical rule violation, the SLA Manager 
instance adds the reported violation to the violation list. If the number of violations 
exceeds the RuleThreshold, the actuations are triggered. It is worth mentioning that all 
actuations in the policy are called. In cases where different actuations are expected 
based on different rule violations, these are translated into different policies. 

 



 

 

7. Conclusion 

This report (i.e., the final report on the status of WP3 - part 2) concludes the efforts 
made by BRAINE WP3 partners in five areas: the design of a novel Cognitive 
Framework, the architecture of the Forecasting Functional Block (FFB), the challenges 
and a solution for deploying K8s in edge computing environments, the extension of the 
vocabulary to support workflow placement and description, and the design and 
implementation of the SLA Broker.  

The information presented in this report is expected to be useful for researchers and 
practitioners in the field of edge computing, AI, and machine learning. 

 

 

 


