

BRAINE - Big data Processing and Artificial Intelligence at the
Network Edge

Project Title: BRAINE - Big data Processing and Artificial
Intelligence at the Network Edge

Contract No: 876967 – BRAINE

Instrument: ECSEL Research and Innovation Action

Call: H2020-ECSEL-2019-2-RIA

Start of project: 1 May 2020

Duration: 36 months

Deliverable No: D3.4

Fourth report on the status of WP3

Due date of deliverable: 30 November 2022

Actual submission date: 28 February 2023

Version: 1.0

Project funded by the European Community under the
H2020 Programme for Research and Innovation.

Project ref. number 876967

Project title
BRAINE - Big data Processing and Artificial Intelligence at
the Network Edge

Deliverable title Final project report on the status of WP3 – Part 2

Deliverable number D3.4

Deliverable version Version 1.0

Previous version(s) -

Contractual date of
delivery

30 November 2022

Actual date of delivery 28 February 2023

Deliverable filename Final project report on the status of WP3 – Part 2

Nature of deliverable Report

Dissemination level PU

Number of pages 48

Work package WP3

Task(s) T3.1, T3.2, T3.3, T3.4

Partner responsible DELL

Author(s) Mustafa Al-Bado (Dell), Alessio Giorgetti (CNIT)), Javad
Chamanara (LUH), John Rothman (LUH), Edgard Marx
(ECC), Luca Valcarenghi (SSSA), Alessandro Pacini
(SSSA), Andrea Sgambelluri (SSSA), Emilio Paolini
(SSSA).

Editor Mustafa Al-Bado (Dell)

Abstract

Keywords

Copyright

© Copyright 2020 BRAINE Consortium

This document may not be copied, reproduced, or modified in whole or in part for any
purpose without written permission from the BRAINE Consortium. In addition to such
written permission to copy, reproduce, or modify this document in whole or part, an
acknowledgement of the authors of the document and all applicable portions of the
copyright notice must be clearly referenced.

All rights reserved.

Deliverable history

Version Date Reason Revised by

00 08.11.2023 Table of Contents - version 00 Mustafa Al-Bado

01 17.02.2023 Final review Mustafa Al-Bado

List of abbreviations and Acronyms

Abbreviation Meaning

5G 5th Generation

AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

CU Centralized Unit

DSP Digital Signal Processors

DU Distributed Unit

ECG ElectroCardioGram

EEG ElectroEncephaloGram

EMDC Edge Mobile Data Center

EPC Evolved Packet Core

ERP Enterprise Resource Planning

EU European Union

FPGA Field Programmable Gate Arrays

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

HRC Human-Robot Collaboration

iDT intelligent Digital Twin

ICT Information and Communication Technologies

IP Internet Protocol

IoMT Internet of Medical Things

IoT Internet of Things

IT Information Technology

KPI Key Performance Indicator

MES Manufacturing Execution Systems

MOD MOtif Discovery

PoC Proof of Concept

QSD Qualified Synthetic Data

RAN Radio Access Network

TBC To Be Confirmed

TBD To Be Defined

TCP Transmission Control Protocol

TLS Transport Layer Security

TFLOPS Tera Floating Point Operations Per Second

TSN Time-Sensitive Networking

UE User Equipment

URI Uniform Resource Identifier

URLCC Ultra-Reliable Low-Latency Communication

USRP Universal Software Radio Peripheral

Table of Contents

1. Executive summary ... 8

2. AI-based workload placement in an edge environment .. 10

2.1. AI/ML-based scheduler ... 10

2.2. State and Model Description ... 11

2.3. State space Rendering with multiple policies ... 12

2.4. Dataset Description ... 12

2.4.1. Definitions .. 12

2.5. Performance of the Optimization Objectives .. 15

2.5.1. Definitions .. 15

2.5.2. Optimization Objective: Waiting Time ... 16

2.5.3. Optimization Objective: Energy savings ... 18

3. Improved scalability, predictability and stability for edge services 21

3.1. Forecasting Functional Block architecture ... 21

3.2. Exposed Interfaces ... 23

3.3. Usage Example ... 24

3.4. FFB Conclusions ... 25

4. SDN controller (CNIT).. 26

4.1. Telemetry workflow ... 26

4.2. SDN controller applications ... 27

4.2.1. The BRAINE app ... 27

4.2.2. The BRAINE P4 app .. 28

4.3. P4 pipeline implementation ... 28

4.3.1. P4-based matching of pod-to-pod traffic ... 29

4.3.2. P4-based postcard telemetry implementation ... 29

4.4. Experimental demonstration results .. 30

4.4.1. Experimental setup .. 30

4.4.2. Experimental results ... 31

5. DevOps for edge computing supporting AI .. 35

6. Monitoring and SLA broker incorporation for transparency and enforcement 41

6.1. System requirements .. 41

6.2. System Components ... 43

6.2.1. SLA Broker Manager .. 43

6.2.2. SLA Analyzer instance ... 44

6.2.3. SLA Manager Instance ... 45

7. Conclusion... 46

List of Figures

Figure 1.1: An architecture diagram of where components integrate as part of the overall
BRAINE ... 9
Figure 2.1: Component diagram of BRAINE RL scheduler .. 10
Figure 2.2: Representative state vs. Neural Network output .. 11
Figure 2.3: The trained model policy (top) vs. graph represents a greedy Utilization
policy (bottom) ... 12
Figure 3.1: FFB High Level Software Architecture ... 21
Figure 3.2: FFB API... 23
Figure 3.3: FFB Performance in 5G use case.. 25
Figure 4.1: BRAINE EMDC main components and closed-loop telemetry workflow....... 26
Figure 4.2: Internal architecture of the ONOS apps developed for the BRAINE project,
including relations with ONOS core services, drivers and protocols. Red connectors
represent relations implemented within this work, blue connectors represent relations
already present in the ONOS core. .. 27
Figure 4.3: Proposed pipeline architecture for traffic forwarding and telemetry: a) Parser;
b) Ingress pipeline; c) Egress pipeline. .. 29
Figure 4.4: Experimental testbed encompassing computational and networking
resources. ... 31
Figure 4.5: Wireshark capture of ICMP traffic between two pods................................... 32
Figure 4.6: ONOS view of rules installed on switch S1. ... 32
Figure 4.7: Monitoring Platform: view of switch latency for traffic flows 250 and 123.
Latency [ns] as a function of experiment time. ... 33
Figure 4.8: Flow bitrate: (a) flow 250; (b) flow 123. Mbps as a function of experiment
time. .. 33
Figure 4.9: Auxiliary panel view of switch latency for traffic flows 250 experiencing
network failure recovery excluding the Telemetry and Monitoring Platform. Latency [ns]
as a function of experiment time. ... 34
Figure 5.1: Excerpt of BRAINE schema (lift) highlighting Service, Workflow and Image
Descriptors. ... 36
Figure 5.2: Excerpt of BRAINE vocabulary lift highlighting Workflow, Image and Service
Registries. ... 37
Figure 5.3: BRAINE webclient. .. 39
Figure 5.4: BRAINE webclient Image Registry Web Interface. 39
Figure 5.5: BRAINE webclient Image Registry Web Interface. 40
Figure 6.1: the workflow for successfully instantiating SLA Analyzer and Manager
instances ... 43
Figure 6.2: An example of an SLA Broker deployment .. 44
Figure 6.3: SLA Analyzer deployment ... 44
Figure 6.4: Reporting rule violation for an SLA Manager instance 45

1. Executive summary

This report provides an update on the developments made in year-3 of the BRAINE

project related to the design, prototype, and implementation of the BRAINE WP3

components. This technical report presents the final outcome of WP3 (Part 2), which

includes several sections and results.

Specifically, the current deliverable highlights the following:

• An update on the developments made in year-3 of the BRAINE project related to

the design, prototype, and implementation of the BRAINE WP3 components.

• The design of a novel Cognitive Framework and provides a list of all WP3

software components’ details and links to their implementations in the BRAINE.

• A recap of the architecture of the Forecasting Functional Block (FFB) and

describes its flexibility in terms of models and metrics.

• Highlights the challenges in deploying K8s in edge computing environments due

to bandwidth limitation or bounded latency. The report presents a specifically

designed and comprehensive framework to address these challenges that relies

on SDN network controller, Service Level Agreement (SLA) broker, and

Telemetry Collector.

• The extension of the vocabulary to support workflow placement and description.

• The design and implementation of the SLA Broker and its role in resolving

system violations.

Table 1.1 lists the components reported in D3.4 including partners, components’ names

and Figure 1.1 shows an architecture diagram of where these components integrate as

part of the overall BRAINE.

Partner Components Deliverable

LUH RL Scheduler - Training Agent (C3.6.1) D3.4

RL Scheduler - Inference Engine (C3.6.2)

RL Scheduler – K8s Scoring Plugin (C3.6.4)

SSSA Forecasting functional block (C3.24) D3.4

CNIT SDN network controller (C3.13) D3.4

ECC Image Orchestrator (C3.11) D3.4

BRAINE Schema for describing Services &
Computational Resource (C3.23)

DELL SLA Broker (C3.15) D3.4

Table 1.1: Reported components

Figure 1.1: An architecture diagram of where components integrate as part of the overall
BRAINE

C3.11

C3.6

C3.24 C3.13

C3.15

C3.23

2. AI-based workload placement in an edge environment

The overall architecture and the detailed description of the AI-based workload placement
were presented in D3.2 last year. Here in this report, a short recap of the architecture is
provided. Then, this document describes the data and the performance aspects of the
work.

2.1. AI/ML-based scheduler

The BRAINE scheduler (available at: https://gitlab.com/braine/wp3-work_placement-luh/)
customizes the default behavior of the Kubernetes scheduler by using deep
reinforcement learning (DRL) in the node scoring step to optimize the node selection
strategy for energy or waiting time reduction. To do so, it uses the following information
in the RL state:

• Pod features: The CPU, memory and disk requests of the pod.

• Node features: The current resource utilization levels of the nodes across the

selected resource dimensions (CPU, memory, disk).

This information is then fed into a neural network that is trained to return the node
scores. The reward/objective to be optimized can be specified in the configuration file
prior to the training process. A high-level illustration of the different components involved
in the proposed RL-based scoring plugin is presented in Figure 2.1.

Figure 2.1: Component diagram of BRAINE RL scheduler

https://gitlab.com/braine/wp3-work_placement-luh/

1. Scheduler Trainer: is the training component that is deployed as a pod and is

in-charge of training the neural network for various cluster sizes, training data,

workload types, and optimization objectives.

2. Scheduler Inference: is a containerized RESTful API Kubernetes service
hosting the ML-based inference engine. The inference engine serves the
prediction/scoring requests based on the trained models produced and deployed
by SchedulerTrainer.

3. BRAINE K8s Scheduler: is the Kubernetes scheduler that its scoring plugin has
been replaced by the LUH developed custom scoring module. This component
also runs as a standalone pod.

4. Data Access Agent: is a standalone containerized Kubernetes service that as a
component of the cognitive framework exposes a REST API and acts as an
intermediary between the scheduler and the telemetry data provider or any other
data source of interest for the AI/ML modules.

2.2. State and Model Description

Figure 2.2: Representative state vs. Neural Network output

The representative state is shown on the left-hand side, while the Neural Network output
is shown on the right-hand side of in Figure 2.2. The state is comprised of CPU request
and Memory request as well as the Utilization rates for the resources on each node.
The output score Q1 is Score of Machine 1, Q2 is the score for Machine 2, etc. The
machine with the highest score is the chosen pod.

2.3. State space Rendering with multiple policies

Figure 2.3: The trained model policy (top) vs. graph represents a greedy Utilization policy
(bottom)

In this example we are using 5 resource dimensions (CPU, memory, disk, bandwidth,
and latency). The y-axis represents the usage of each resource dimension. Figure 2.3
represents the trained model policy. while the bottom graph represents a greedy
Utilization policy.

The black bars represent a part of a machine which is inactive. The idea here is that we
have some maximum resource value available, and all machines will take up some
percentage [100%,0%) of each resource dimension. During training and testing each
machine has each resource capacity randomly generated.

The blue bars represent currently used up machine usage. Note that a fully utilized
machine will have the black bar plus the blue bar at 100%. Also, the red bar represents a
newly placed pod.

2.4. Dataset Description

2.4.1. Definitions

Table 2.1 lists the definitions used in the explanation of the training data.

Term Definition

Resource Utilization Here we are only considering normalized resource utilizations.
1 is maximum, 0 is minimum.

R∈R Resource “r” is an element out of the set of resources “R”

One example of “R” could be [CPU, DISK, MEMORY]

Spiked Resource:
SR{r}

A single resource chosen out of the set “R” which by definition
will have a resource request and utilization which is
significantly greater than the other resource dimensions

SRP{r} Spiked Resource probability for resource “r”. This would
indicate the probability of selecting a specific resource.

Non spiked
resources: NSP

I’ll use this to denote all resources which are not spiked. So if
Spiked Resource is denoted as SR{r}, All non-spiked
resources is denoted as NSP{R\r}

Spiked Pod : SP{r}

SP{r} = Pod with resource dimension utilization “r” spiked.

A spiked resource dimension will have a usage much greater
than the others, aka. Spiked resource. So a pods spiked
resource might have 5-20 times more utilization across its
dimension when compared to all other dimensions.

Spiked Pod set :
SPS{r}

 SPS{r} = A group of Spiked Pods where all pods have the
same spiked resource dimension “r”.

This can vary in length. E.g. A SPS length of 20 could give 20
pods with the CPU resource dimension at 5-20% utilization,
while Disk and Memory will both have 0-1% utilization.
Currently we are only training/testing with fixed SPS lengths.

Pod Length Mu Value to control the Pod Length normal distribution mean
value. The Pod Length determines how long a pod lasts.

Pod Length Sigma Value to control the Pod Length normal distribution spread
value

Table 2.1: Definitions used in the explanation of the training data

Utilization magnitude: All resource dimensions are normalized to the interval of [0 .. 1].

Each SP{r} (Spiked Pod for a specific resource) has a single SR (spiked resource), and

many NSR’s (non-spiked resource). The NSR’s have an independently and identically

distributed random (IID) selection in the range of [0, 0.02], or [0, 0.01] depending on the

test. In other words, up to 2% or 1% utilization, respectively. The spiked resource will

have an identically distributed (ID) random selection in the range [0.05, 0.2].

Pod Durations: The Pod Durations are generated with a normal distribution with 𝝁 (Pod

Length Mu) and 𝛔 (Pod Length Sigma). The 𝝁 value controls the normal distribution
mean value, while the 𝛔 value controls the normal distribution spread value. Pod
durations below 1 second are rounded up to 1 second.

Training Random selection with removal: This ensures the least amount of overlap of
spiky resources when iterating through the SPS. Assuming S is a copy of the set R,
Procedurally for each SPS{r} we randomly select an element from the set of resources in
S with removal. This is continued over all resources until S is empty. In which we reset
S by performing S=R and continue back to random element selection with removal. This
can also be thought of as having a list of all resources, and picking out (and not putting it
back) one at a time to use as the Spiky Resource in the SPS. When your list is empty,
just refill it and start over.

Testing Random selection without removal: Doing Random selection with removal is
not a realistic situation so for testing we must use a different strategy. We have some
Test results experimenting with Random element selection from R without removal.
Therefore for each SPS{r} we randomly select an element from the set of resources in S
without removing resources from the set.

Resource probability selection (for without removal): The probability of a specific
resource being selected for a SPS can be controlled so give weights to specific
resources. This enables us to test in environments that might have a single specific
resource as a SR, e.g. mainly CPU intensive environments.

We will denote the SPS’s SR (Spiked Pod Set’s Spiked Resource) probability of being
selected as RESOURCE(PROBABILITY), e.g. CPU(0.5) would represent that for each
new SPS, there is a 50% chance that the CPU will be selected as the SR. All
probabilities must sum to one, so the “leftover probabilities” are evenly given to all the
other resource dimensions. We can also represent multiple resources, e.g. CPU(0.2),
DISK(0.3) which translates to a 20% probability of selecting CPU as the SR, and 30%
probability of selecting DISK as the SR.

SPS example for understanding: Example 2-1 illustrates examples of training with
Random resource selection for each Spiked Pod Sets (SPS), but with removal. Given 3
resource dimensions (CPU, Memory and Disk), and with SPS length of 4, that would
mean that after 12 pods (4*3) we will have fully cycled through all resource dimensions
as a Spiked Pod Resource. Below we will illustrate one full training iteration through all
resources, but with grouping the pods by SPS

First Randomize resources -> [CPU, MEM, DISK]

SPS set name Description

A Train SPS{CPU} =Train with the 4 pods with SP{CPU}

B Train SPS{MEM} =Train with the 4 pods with SP{MEM}

C Train SPS{DISK} =Train with the 4 pods with SP{DISK}

Example 2-1: Randomize resources -> [CPU, MEM, DISK]

Now that we iterated though all resource we will randomize the resources again ->

[MEM, CPU, DISK] (see Example 2-2)

SPS set name Description

D Train SPS{MEM} =Train with the 4 pods with SP{MEM}

E Train SPS{CPU} =Train with the 4 pods with SP{CPU}

F Train SPS{DISK} =Train with the 4 pods with SP{DISK}

Example 2-2: Randomize resources -> [MEM, CPU, DISK]

Table 2.2 visualizes SPS A, B, and C without grouping of each SPS. Spiked resources

are highlighted.

Below we illustrate the first table but without the SPS groupings so we can see each

individual pod along with sudo-generated utilizations for each resource.

SPS set
name

Spiked
Resource

CPU utilization % MEM utilization % DISK utilization
%

A CPU 8 1 1.1

A CPU 5 1.5 0.1

A CPU 15 2 0.8

A CPU 19 0.5 0.1

B DISK 0.9 0.01 6

B DISK 1.7 0.8 17

B DISK 0.7 1.2 11

B DISK 1.01 0.9 5

C MEM 1.1 7 0.4

C MEM 1.9 17 0.7

C MEM 0.9 10 1.7

C MEM 0.4 20 0.9

Table 2.2: illustration of SPS A, B, and C without grouping of each SPS. Red indicates the
spiked resource dimension.

 We repeat this process until the dataset is complete or training has terminated. We

then randomize all training/testing pod requests, as well as the pod duration lengths,

while maintaining the SPS structure.

2.5. Performance of the Optimization Objectives

2.5.1. Definitions

Table 2.3 lists the definitions used in the explanation of the reward calculation.

Rewards

Rewards for
Increasing

Pod
Throughput

Fragmentation
Average

Reward that calculates the fragmentation average
score across all machines. Modification from the
paper “Scheduling of Time-Varying Workloads
Using Reinforcement Learning”

Simple
constant

Every job scheduled just returns a plain 1. The
learning happens from the agent trying to squeeze
more jobs in the machine before the episode ends

Rewards for
Decreasing

Energy
Consumption

Utilization
Spread

We take the utilization reward

utilization = np.sum(np.power(usages, 3)) /
len(usages)

And Divide by the number of machines being used

 utilization / number_of_machines_being_used

This will be similar to utilization reward, but will have
a stronger punishment for using more machines.

Machine Job
Fraction
Reward

np.log(Total Jobs Running now+ 1) / (Number of
Machines used)

Min Machine
Reward

(Number Machines Unused)/ (Total Number of
Machines)

Negative
Machine
Reward

((Total Number of Machines) - (Number Used
Machines))/(Total Number of Machines)

This reduces the reward as more machines are
used, but it is never negative.

Table 2.3: Definitions used in the explanation of the reward calculation.

Total Pods Before Full Cluster (∝Reduced Pod wait time): For now the metric we are
monitoring is “Total Pods Before Full Cluster,” (TP). This metric is going to pre
proportional to the following metrics: Throughput, Fragmentation Score, and Reduced
Pod Wait Time. . Depending on what metric we want to show, the current TP metric can
be transformed into any other metric if given the correct coefficients. For now I’ll show
the TP metric, but later we can easily change it to the “Reduced pod wait time,”

Workload: Workload type is similar to batch processing. In this case we are simply
testing the efficiency of how the model stacks a given series of pods.. We are testing
with long running tasks. While we are ending an episode as soon as the machine is full,
if we were to account for pods waiting to be submitted then we could determine reduced
pod wait time.

Episode termination: An episode is terminated if the machine fills up, and cannot place
the next pod. This is helpful for the model to learn, because when combined with
Prioritized Experience Replay (PER) it will tend to learn from events that had higher
rewards, i.e. episodes where the policy stacked the pods more effectively. The task
durations are set to infinite because we are highlighting the models ability to stack the
pods in a better way when compared to the K8S-MA (Kubernetes most action, aka
Greedy-Utilization).

2.5.2. Optimization Objective: Waiting Time

Run Parameters:

• Spiked Resource (SR) Random Selection from Uniform Distribution (0.05,0.2]

• Non Spiked Resource (NSR) Random Selection from Uniform Distribution (0.00,0.02]

• Spiked Pod Set (SPS) length 40

• 15 machines

• 5 resource dimensions

• Learning Rate 1e-4

• Long Pod durations (no pods are removed during training or testing, only continuous
stacking of pods)

• 200 Test instances

Percent improvement from Greedy Utilization

Row
ID

Random
Selection
Process

SPS
Resource
Selection

Distribution

Policy
Simple

constant

Policy
Frag

Average
Reward

Policy
Utilization
Fraction

Policy
Min

Machine

Policy
Machine

Job
Fraction

1

 With
Removal

Not a
uniform

distribution
26.87 3.22 1.54 2.26 1.80

2

With
replacem

ent

Uniform 19.5 2.73 1.47 2.05 1.71

3

CPU(0)

8.10 1.32 0.57 0.57 0.76

4
CPU(0.5) 8.11 1.35 0.44 0.95 0.64

5
CPU(0.8) 0.10 0.20 0.14 -0.01 0.32

6

CPU(1)

-1.1 0.08 0.19 -0.03 0.22

Table 2.4: Performance measurement under various configurations

Table 2.4 presents the percent improvement from Greedy Utilization as following:

Row 1: One way to look at the results would be with some kind of resource

fragmentation score (RFS). We can define resource fragmentation as a function that

returns a high score when all resource dimension utilizations have close to equal

magnitude, and a low score when the resource dimension utilization magnitudes vary

greatly between each other. We can see why a high RFS would be desired if we look at

the extremes. the lowest RFS score could be where CPU is at 100% utilization and

Memory and Disk are close to zero. In this situation a majority of the machine is not able

to be used because the CPU is at maximum capacity and is blocking more pods from

being able to be scheduled on the machine. In the opposite situation a very high RFS

score could mean that all CPU, Memory, and Disk are used at 100% and there are no

wasted resources.

The reason Row 1 constantly performs the best for all rewards comes down to a policy

that is able to produce a Resource Fragmentation Score that is on average higher then

the other policies. Row 6 with CPU(1) is guaranteed to produce a very low FS. While

Row 1 gives the highest possibility for a high FS. Because we are constantly changing

the Spiky Resource dimension and because there is almost no repeating Spiky

Resources between any two Spiky Pod Sets, it allows a model the maximum opportunity

to stack Pods in clever ways to ensure a high FS.

Row 2: This is slightly behind row 1 because in this dataset we allow for the

chance of repeating Spiky Resources.

Row 3 and 4: Interesting note that these rows are so similar. This is most likely a

coincidence, and it just so happens for our given number of resources and machines

that the policies tend to produce similar results.

Never selecting the CPU (row 3) results in an episode termination when one of the other

four resources are full across all machines. I suspect that in row 4 the CPU resource is

filling up (due to it being selected 50% of the time), and it just so happens to produce a

set of pods that fills up the machines in a similar time manner when compared to row 3.

We could test this hypothesis by including or removing a machine and see if we get

different test results.

Row 6 and 5 - These rows perform the worst across all resources. This is

because if we are constantly selecting the CPU resource to be spiked, this will lead to

the cluster quickly filling up the CPU across all machines and leaving the other resource

dimensions close to empty. The reason why the model is not able to perform better than

the Greedy Utilization is because there are little to no opportunities for improvement. If

we can use an analogy from the game “Tetris” this would be like removing the ability to

rotate a piece, you can move the Tetris pieces left and right, but without the ability to

alter the rotation of the piece, there are only so many ways you can place the piece, and

this handicap will result in a game over quickly. The analogy doesn’t fit 100% because

our trained models cannot “change” a Spiky Resource Dimension of a Pod request like

we can with rotating a Tetris piece, but the generalization still stands.

 Considering the Resource Fragmentation score then CPU(1) will quickly fill up all

machines (leaving all other resources unable to be used) and produce a low

fragmentation score.

Utilization Fraction, Min Machine, and Machine Job Fraction Policies: These

policies performed not as well because they were trained to reduce energy performance.

Simple constant Policy: This policy performs the best. Most likely the reason it

performs better is because we are simplifying the problem. Perhaps calculating the

Policy Frag Average Reward ends up complicating things for the model during training.

Sometimes the model is forced to make a decision which produces a low fragmentation

score, i.e. placing a Pod on an empty machine.

Regarding the CPU(1) score, I believe that if we had 500 to 1k Test instances, the

Percent improvement from Greedy Utilization would be much closer to zero. Later we

can test this.

2.5.3. Optimization Objective: Energy savings

Energy saving is measured by an indirect indictor, the number of idle machines. We test

a burst workload scenario in that a high number of short-lasting pods are submitted to

the cluster.

Parameters:

• SPS length 40

• 15 machines

• 5 resource dimensions

• Learning Rate 1e-2

• Test Episodes: 500

• Target update interval (when to update the second model)
o Every 1000 steps

• Pod Length Mu
o Training: 150
o Testing: 40

• Pod Length Sigma
o Training: 100
o Testing: 10

Table 2.5 shows the percent of fewer machines used from Greedy Utilization.

Episode termination: The episode terminates after X number of pods have been

submitted. During testing we used 5k pods.

Improvement Table: Positive percentage means an improvement, while a negative

percentage means Greedy Utilization performs better. Note we are only considering

after the machines have been semi-filled. Only considering the last 100 jobs submitted.

Percent of fewer machines used from Greedy Utilization (last 1k jobs)

Row
ID

Random
Selection
Process

SPS
Resource
Selection

Distribution

Policy
Simple

constant

Policy
Frag

Average

Reward

Policy
Negative
Machine

Policy
Utilization
Fraction

Policy Min
Machine

Policy
Machine

Job
Fraction

1

 With
Removal

Not a
uniform
distributi
on

-71.10 -14.13 2.82 5.48 -1.72 -4.77

2 With
replacem

ent

Uniform -99.95 -12.25 2.06 0.29 -6.97 -5.33

3

CPU(0)

-89.60 -7.05 0.89 0.42 -6.04 -4.10

Table 2.5: Percent of fewer machines used from Greedy Utilization (higher is better)

We cannot test rows CPU(0.5), CPU(0.8), and CPU(1) because the machines will almost

instantly fill up. The reason we are able to test with CPU(0) is because it allows for a

random selection of the four other resources. These four other resources provide

enough varied Resource Spiking that the machines don’t fill up. The reason we don't’

want the machines to fill us is because we are testing for a situation of “moderate cluster

fullness”. If only a single machine is being used, there is no room for improvement.

Inversely if all machines are filled, there is often no room for improvement.

Policy Utilization Fraction: This is the best policy that is able to outperform the Greedy

Utilization. While the policies Min Machine and Machine Job Fraction are closer to

Greedy Utilization, the policies trained for throughput (Simple Constant and Frag

Average Reward) performed much poorer. This policy is able to perform well because

it is able to stack the pods in a more efficient manner allowing for a higher

Fragmentation score. If you have a higher Fragmentation score, then you will have

more pods on less machines when compared to a lower Fragmentation score. The

Throughput optimized policy “Simple constant” is also trying to reduce the Fragmentation

score but has no constraints with the number of machines it uses, so it tries to use up as

many machines as possible.

3. Improved scalability, predictability and stability for edge
services

3.1. Forecasting Functional Block architecture

The Forecasting Functional Block (FFB) is a functional block devoted to the computation
of forecasting values for given metric(s) of a Network Service. It behaves like a probe,
which, consuming the current data related to the selected metric(s), provides a
forecasted data stream according to the used model.

The FFB has been designed to interact with other components of the BRAINE

architecture, i.e., Distributed Knowledge-base system. It has been implemented in

Python, relying on different standard libraries.

In general, the FFB interacts with other BRAINE modules by primarily using the API:

1. REST Server:

i. receiving as input all the data required, to activate a forecasting job. The

input data includes: the input/output Kafka topics, the model's name to be

used and the message keys to be mapped over the model default

features.

ii. receiving new trained models, along with details about their default

input/output features.

iii. producing information about existing models, their descriptions and the

active forecasting jobs.

iv. stopping forecasting jobs.

2. Kafka producer/consumer: receiving and producing data from/to Kafka topics

according to the running forecasting jobs. The Kafka cluster belongs to the

BRAINE Distributed Knowledge-base system.

Figure 3.1: FFB High Level Software Architecture

The FFB software architecture is shown in Figure 3.1 and it is composed by the following

main blocks:

• Forecasting Manager: this block is the core of the FFB. It consists in a python-

based project, that includes different modules with different roles:

• The basis of the module is based on a Flask REST server that

implements the APIs to other functional blocks. The details of the

exposed/implemented APIs are detailed in Section 1.1. In general, the

APIs allow to both start and stop a forecasting job, according to the input

parameters, and to retrieve information regarding the active jobs.

• A part of the module has been defined in define forecasting jobs. It is

based on Keras Tensoflow library, where multiple forecasting algorithms

can be utilized. Each forecasting job receives data from an instance of

Kafka Consumer, able to retrieve current data related to the performance

metric to be forecasted, streamed on a dedicated Kafka topic. Each

forecasting job runs a specific model. In general, the model must be

trained and uploaded in order to be used for forecasting purposes. The

FFB can exploit forecasting algorithms based on classical time series

analysis (i.e., double exponential smoothing, DES, and triple exponential

smoothing, TES) and AI/ML-based.

• The output of the forecasting job is then sent to a dedicated Kafka topic

using an instance of Kafka producer, which is filled up with the forecasted

metrics.

• The overall state of the module is maintained in a dedicated database. In

particular, all the details of the instantiated forecasting jobs are kept up to

date, including the job_id, the input parameters, used for the forecasting

job activation, the ad-hoc input/output Kafka topic, the selected model

name and the downloaded model file.

An example of workflow is described below:

1. A model is pretrained and optimized using offline data collected for a specific

aim.

2. The model is then uploaded using the FFB using a specific endpoint available at

its REST server. Along with it, a Json object is uploaded containing the default

input/output features of the model and number of backward/forward metrics

needed/generated by the model.

3. Once a new forecasting job has to be activated, the specific REST endpoint has

to be used. The information to be provided are: the input and output Kafka topics,

the model to be used, and the input/output features name to be mapped over the

default ones.

4. After that, the FFB setups the DB according to the metrics to be stored and starts

collecting the input features from the input topic.

5. As soon as the number of collected metrics reaches the backward metrics

parameter of that model, it starts producing forecasted metrics (the output

features) into the output Kafka topic defined.

3.2. Exposed Interfaces

Figure 3.2 shows a swagger view of the implemented API at the Forecasting Functional
Block. Following the details of the interfaces are shown.

Figure 3.2: FFB API

Forecasting Manager. The APIs exposed by this module enable the creation and the
deletion of forecasting jobs. All the requests and responses follow the JSON format. The
implemented methods are reported in Table 3.1.

POST /forecasting/ Activate a new forecasting job.

Input parameters:

• intopic (string)
• outtopic (string)
• modelname (string)
• inputfeatures (dict strings)
• outputfeatures (dict strings)
Responses:

• 200: The job_id is returned.
• 404: Forecasting job not started.
• 400: Bad request

GET /forecasting/ Retrieve the list of active forecasting jobs.
Responses:

• 200: The list of the forecasting jobs
(“job_id”) is returned.

GET /forecasting/(job_id} Retrieve the forecasting job details with the
specified “job_id”.
Responses:

• 200: The details related to the forecasting
job with “job_id” are returned.

• 404: Forecasting job not found.

DELETE /forecasting/(job_id} Stop the forecasting job identified with the
job_id:

• 200: The forecasting job with “job_id” is
stopped.

• 404: Forecasting job not found.

POST /model/ Upload a new trained model.

Input parameters:

• modelname (string)
• modeldescriptor (JSON):

• modeltype (string)
• definputfeatures (string[])
• defoutputfeatures (string[])
• backmetrics (int)
• fwdmetrics (int)

• description (string)
• modelfile (file h5)
Responses:

• 200: The model is uploaded.
• 400: Bad request

GET /model/{model_name} Retrieve the model descriptor and the
description of the model with the specified
“model_name”.
Responses:

• 200: The details related to the forecasting
job with “model_name” are returned.

• 404: Model not found.

DELETE /model/{model_name} Deletes the model identified with the
“model_name” and stops any related jobs.

Responses:

• 200: The model with the specified
“model_name” is removed.

• 404: Model not found.
Table 3.1: FFB Forecasting Manager APIs

3.3. Usage Example

This section shows an example of usage of the FFB.
In this case, the FFB has been exploited to forecast data from the Mosaic 5G FlexRAN
framework managing a 5G testbed.
More precisely, the component consumes SD-RAN metrics from the dedicated Kafka
topic, filled by the 3.4 Telegraf agent.
The main feature to be forecasted was the Wide Band Channel Quality Indicator
(WBCQI) in download for each UE.
A model has been developed with the following configuration:

• One convolutional layer with 128 filters, kernel size 9;

• Two fully connected layers, with 64 filters and 1 output

It takes in input the t-100 samples in the past, and forecasts t+4. The training data has
been collected from the 5G testbed using Telegraf, while manually interfering with the
channel quality. The training dataset reaches 30000 samples.

After that the model has been trained, it has been uploaded onto the Forecasting
Functional Block by using ForecastingManager API.

The Figure 3.3 shows a plot comparing values for t (in green) from the input topic, the
forecasted t+4 (in blue) from the output topic and the actual t+4 (in orange) of the
WBCQI value. As you can see, the plot shows the forecasted metric against the actual
ones while artificially degradating the signal.

Figure 3.3: FFB Performance in 5G use case

By using the Mean Squared Logarithmic Error (MSLE) among the actual and the
forecasted value, the model reached an MSLE of 0.074. This can be further improved by
using a larger dataset.

3.4. FFB Conclusions

The developed Forecasting Functional Block (FFB) achieves large flexibility in terms of
models and metrics to be forecasted. Thanks to the defined API, new forecasting jobs
can be deployed in any moment as far as a model is available. Moreover, this also
allows to practically test new versions of a model by executing multiple jobs at the same
time. A component with such flexibility at the edge can offer a rapid deployment of new
services and functionalities.

4. SDN controller (CNIT)

The standard K8s platform uses a flat network structure that enables Pods to
communicate with each other on their hosting cluster. Such flat K8s network, also called
Pod network, does not account for network constraints in terms of limited bandwidth or
bounded latency. For this reason, deploying K8s in edge computing environments to
serve latency/QoS-critical applications requires a specifically designed and
comprehensive framework. In particular, specific workflows are needed to efficiently
interface K8s with various components such as SDN network controller, Service Level
Agreement (SLA) broker, and Telemetry Collector.

4.1. Telemetry workflow

This section presents a comprehensive framework enabling the SDN controller to
interact with the K8s scheduler for enabling communication among pods and services
deployed on different servers considering the traffic encapsulation applied by the
networking tools typically adopted by K8s, such as the “flannel” framework operating in
the VXLAN mode. The proposed closed-loop also includes a telemetry system enabling
effective SLA monitoring and enforcement. Finally, the framework encompasses an SLA
broker interfaced with the telemetry system triggering the SDN controller to perform
automated network adaptation upon detection of network performance degradation.

Figure 4.1, illustrates the demonstration workflow as presented in the OFC conference
demo Zone in March 2022. The demonstration has been realized using the CNIT cluster
deploying a set of pods on two different servers that are interconnected through a
packet/optical network using P4-based switches and optical nodes.

Figure 4.1: BRAINE EMDC main components and closed-loop telemetry workflow.

The demonstration workflow realizes the following steps: Step 1: The scheduler places
the Pods with their own requirements on different nodes/locations on the cluster. Step 2:
The K8s scheduler retrieves the network parameters of the deployed Pods. Step 3: the
K8s scheduler submits a connectivity request to the extended SDN controller feeding the
specifically designed ONOS REST interface with the network parameters of the
deployed Pods. Step 4: The SDN controller initiates the configuration of the connectivity
including both the packet network based on P4 equipment (using P4-Runtime protocol)
and the disaggregated metro optical network based on OpenConfig and OpenROADM

yang models (using Netconf protocol), in the same step the SDN controller activates the
post-card telemetry on the traversed P4 switches. The telemetry could be also
started/stopped in a subsequent step. Step 5: Once the connectivity is configured the
traffic starts to flow into the network. Step 6: The related postcard telemetry is generated
toward the Telemetry Collector. Step 7: When the SLA broker, that is continuously
monitoring the telemetry database, detects a service level degradation (e.g., increased
packet loss or latency) it triggers a service upgrade request to the SDN controller using a
dedicated method of the designed REST APIs. Step 8: In turn, the SDN controller
modifies the network connectivity parameters in accordance with the received request
(e.g., find an alternative path on the network).

4.2. SDN controller applications

The BRAINE SDN network controller is based on ONOS [ONOS]. Figure 4.2 represents
the components specifically developed for BRAINE and utilized in this work to implement
traffic forwarding and in-band telemetry, i.e., the BRAINE app and the BRAINE P4 app.

Figure 4.2: Internal architecture of the ONOS apps developed for the BRAINE project,
including relations with ONOS core services, drivers and protocols. Red connectors
represent relations implemented within this work, blue connectors represent relations
already present in the ONOS core.

4.2.1. The BRAINE app

 This application implements a set of functionalities exposed through REST APIs,
enabling the interaction with Kubernetes, and the SMUI. Also, the same functionalities
can be manually accessed through a set of CLI commands. Moreover, the application
utilizes the ONOS core services to enable the deployment of point-to-point connections
between pods running in different worker nodes of the cluster. The two main
functionalities supported at the data plane by the BRAINE app are: i) connection
management (i.e., add/delete/modify), where each created connection can be specified
up to the transport level (i.e., TCP/UDP ports); ii) activation of telemetry on selected
active connection(s).

To support the aforementioned features, the BRAINE app is composed of several
components (see left side of). In particular the application includes: i) two databases
where connection and link state information are stored; ii) a routing module that performs
redundant routing of requested connections and interacts with the ONOS intent service;
iii) an intent listener that allows the application to react in case of network events
affecting established connections; iv) a logger for tracing and debugging. Moreover, the
BRAINE app supports a set of accessories features to facilitate the interaction with the
network and the gathering of network state information. Specifically, the features

supported by the app can be grouped in four categories: connections related commands,
device related commands, host related commands and link related commands.

4.2.2. The BRAINE P4 app

The companion BRAINE P4 application has been developed to program the specific P4
pipeline to be used in the data plane switches. This application has two main roles: i)
enabling the match of header field encapsulated within VXLAN tunnels; ii) activating the
postcard telemetry on specific traffic flows. The first objective is achieved through the
implementation of a dedicated pipeline (described in next section). For the latter
objective, the application exposes a REST API that is dynamically consumed by the
BRAINE app when a telemetry activation request is received from the orchestrator.

 The internal architecture of the BRAINE P4 application is represented on the right side
of Figure 4.2. It includes the pipeline loader component which loads the P4 pipeline
description via the P4Runtime protocol upon the discovery of P4-based switches. Once
the request to activate a new postcard telemetry on a specific traffic is received through
the REST interface, the Postcard telemetry manager identifies the devices traversed by
the flow and sends them the flow rules to enable the postcard via the pipeline interpreter.
Since the pipeline interpreter is the only component that is aware of the pipeline
structure (e.g., number of tables and supported matching fields per table) it is also used
for translating into flow rules the output of the intent service created to forward traffic.
The statistic discovery component collects traffic related information from the P4-based
devices to be visualized in the ONOS GUI (e.g., counters associated to flow rules).
Finally, the logger component facilitates tracing and debug.

 The BRAINE P4 app then relies on the Bmv2 P4 driver included in the master ONOS
master distribution that has been demonstrated to be fully functional to perform the
connection to P4 devices and to install all the required flow rules using the P4 Runtime
protocol.

4.3. P4 pipeline implementation

The developed P4 program is written in P416 for the target architecture v1model
[V1Model] that includes a parser and two pipelines (ingress and egress). With the
proposed approach the P4 device can be programmed by the SDN controller to forward
both traffic exchanged among pods (i.e., encapsulated using VXLAN) and traffic
exchanged among host machines (i.e., not encapsulated). Moreover, the controller can
activate in-band telemetry (i.e., postcard telemetry, INT-XD) on selected traffic flows,
that can be specified up to transport layer details (i.e., TCP/UDP ports).

 The proposed architecture is working only in conjunction with the Flannel CNI plugin,
that is the one selected to be used in all BRAINE deployments. However, it is easily
extensible to other tunneling techniques applied by different CNI plugins, only requiring
the upgrade of the parser module.

Each pipeline is composed by a number of tables, operating with a match/action policy.
Each table supports a specific set of keys and actions. In each table, a ternary match
policy is used where the selected mask allows to ignore a key or apply an exact match.
Some keys are packet header fields, while others are custom metadata that are
associated to the packet during the parsing procedure.

4.3.1. P4-based matching of pod-to-pod traffic

 The parser, detailed in Figure 4.3(a), is the first module of the ingress pipeline, as
shown in Figure 4.3(b). While the packet passes through the parser stages, its header
fields and the metadata fields are gradually filled. The first stage of the parser writes the
ingress port index into the specific metadata field. Then, the Parse Packet IO stage is
executed only for packets received from the CPU port (i.e., P4 Runtime packet_out
messages received from the controller) to retrieve the packet_out header. The Parse Eth
stage extracts the Ethernet header, moreover it fills the fields
local_metadata.l2_src_addr and local_metadata.l2_dst_addr} with the values contained
in the MAC source and destination fields. Then, in case of IP packets, the Parse IPv4
stage is executed parsing the IPv4 header, and filling the metadata fields
local_metadata.l3_src_addr and local_metadata.l3_dst_add with the IP source and
destination addresses. Subsequently, the packet is sent to one of the Parse TCP/UDP
stages where the metadata fields local_metadata.l4_src_port and
local_metadata.l4_dst_port are filled.

Figure 4.3: Proposed pipeline architecture for traffic forwarding and telemetry: a) Parser;
b) Ingress pipeline; c) Egress pipeline.

If the UDP destination port is 8472, it means that the packet belongs to a pod-to-pod
traffic flow encapsulated within a VXLAN tunnel by Flannel. In this case, the Parse
VXLAN stage is executed parsing VXLAN header, subsequently IP and TCP/UDP
headers are parsed by Parse Internal stages. During these stages, the aforementioned
local_metadata.* fields are overwritten with the corresponding fields enclosed in the
internal headers. This way, if the packet is encapsulated in a VXLAN tunnel, the ingress
pipeline will match the internal header fields, thus enabling pod-to-pod traffic forwarding.

As illustrated in Figure 4.3(b), after parsing, the packets are forwarded to the ingress
pipeline and processed by table0 where the egress port is assigned based on the flow
rules installed by the SDN controller.

4.3.2. P4-based postcard telemetry implementation

 The subsequent tables in both the ingress and the egress pipelines are used to
implement the postcard telemetry. The Postcard_Telemetry table, see Figure 4.3(b),
matches on metadata fields and is intended to contain flow rules for matching each

traffic flow requiring postcard telemetry. Two actions are supported: activate_postcard
and nop. The action activate_postcard is executed for each matching packet (i.e., to
packets belonging to traffic flows for which the SDN controller has activated the
telemetry), setting a specific metadata field (i.e., meta_activate_postcard) that is later
evaluated by an if condition to clone the packet using the cloneI2E external feature. If a
packet is not matched, the default action nop is executed resulting in the packet
forwarded to the egress pipeline without cloning. The cloned packet will be manipulated
in the egress pipeline to generate a report packet.

 The egress pipeline is illustrated in Figure 4.3(c). All the metadata fields
local_metadata.* must be re-initialized because P4 does not allow the propagation of
custom metadata from the ingress pipeline to the egress pipeline. No actions are applied
to the original packet that leaves the switch through the port assigned in table0. Instead,
the cloned packet is processed by the two tables: int_insert and generate_report. The
former table, with a null default action, applies the action init_metadata to matching
packets. This action is the one that actually retrieves the information to be included in
the report message that is written in the local_metadata.postcard_* fields.

The latter table generates the in-band telemetry report message using the action
do_report_encapsulation manipulating the cloned packet. More in detail, the header of
the cloned packet is modified as following. The Ethernet and IP source addresses are
set to the local switch values, while the destination addresses are set to the telemetry
collector values. The UDP source and destination ports are set to a specific value to
easily recognize report packets at the telemetry collector. Finally, the report header is
added as UDP payload that includes the metadata retrieved in the previous table, i.e.,
switch_id, flow_id and all other metadata required by the SDN controller using the
instruction_mask as defined in [INT].

4.4. Experimental demonstration results

4.4.1. Experimental setup

The experimental testbed encompasses both computing and networking resources.
Computing resources are deployed on two dedicated servers, i.e., EMDC1 and EMDC2
in Figure 4.4. The hardware of both servers is a DELL PowerEdge R740, 56 CPUs Intel
Xeon Gold 6238R @ 2.20GHz, 256 GB RAM. Three virtual machines (VMs) are
deployed in EMDC1, while two VMs are deployed in EMDC2. One of the VMs deployed
on EMDC1 hosts the management and control software including the Kubernetes
master, the ONOS SDN controller, the telemetry collector and the telemetry and
monitoring platform. The other VMs act as Kubernetes worker nodes, where each node
runs a number of pods (i.e., each pod encompasses a plain Ubuntu 20.04 distribution
with basic networking tools). The Telemetry and Monitoring platform includes the
telemetry database deployed into an influxdB container, and the SLA Broker,
implemented as a set of configurable queries and threshold-based alarms through
dedicated Grafana panels.

Figure 4.4: Experimental testbed encompassing computational and networking resources.

Networking resources encompass five P4-based switches, all of them emulated using
Bmv2. Switches S1, S2, S3, S4 are emulated on a dedicated DELL server (Intel Xeon
E5- 2643 v3 6-core 3.40 GHz clock, 32 GB RAM) using physical Ethernet interfaces.
Switch S5 is emulated by deploying a dockerized Bmv2 on a Mellanox SN2010, running
SONiC. The traffic report generated by the network nodes is received by the Telemetry
Collector, hosted by the Kubernetes master node. As depicted in Figure 4.4 the report
packet contains: the switch_id field that identifies the switch, the flow_id field that
discriminates traffic flows, Ingress_Timestamp and Egress_Timestamp needed to
evaluate the hop latency.

4.4.2. Experimental results

1) Pod traffic forwarding validation

This section functionally validates the proposed solution to process the traffic exchanged

between a pair of Kubernetes pods. Specifically, the traffic is generated between two

pods respectively deployed on node EMDC1 and EMDC2, thus traversing the P4-based

network. Figure 4.5 illustrates the Wireshark capture, including the VXLAN

encapsulation and the protocol stacking as applied by the Flannel CNI plugin.

Specifically, the ping application is used to generate ICMP request/reply messages

between pod 10.244.1.2 deployed on worker node 1 and pod 10.244.4.2 deployed on

worker node 4. The packets are captured in VM Worker 1 on interface 192.168.42.2.

The presence of both ICMP request and reply proves that packets are correctly switched

by the network in both directions. The experienced round-trip time is around 5

milliseconds.

Figure 4.5: Wireshark capture of ICMP traffic between two pods.

Figure 4.6 shows a screenshot of the ONOS web GUI illustrating the flow rules installed

in switch S1 where the rules counters show that the traffic exchanged between the two

pods is correctly matched.

Figure 4.6: ONOS view of rules installed on switch S1.

2) Pod traffic telemetry validation

This section functionally validates the whole telemetry workflow as described in Fig.

AAA. Specifically, two separate traffic flows are activated between two different pairs of

pods: flow IDs 250 and 123. The two flows consist of five parallel TCP sessions

generated with the iperf3 application. Telemetry is active in both flows; however, the SLA

Broker is configured to generate the feedback to ONOS (step 8 in Fig. AAA) only for flow

250.

Figure 4.7: Monitoring Platform: view of switch latency for traffic flows 250 and 123.
Latency [ns] as a function of experiment time.

Figure 4.7 reports the latency data as collected by the SLA Broker panels during the

network reconfiguration. Both flows are initially routed along the path S1, S3, S4, S2,

thus both plots report four latency lines, one per traversed switch. At time t0 switch S3

transmission rate is manually degraded, thus increasing the switch latency for both

flows. The SLA Broker performs a threshold-based control over the per switch latency of

flow 250 and triggers an alert if the degradation persists for 4 seconds. This behavior is

reflected in the SLA Broker panel as depicted in Figure 4.7. In the actual experiment,

degradation is detected at t1 and the alert is triggered back to ONOS at t2. As described

in the previous sections, ONOS reacts by rerouting the affected flow (i.e., flow 250) on

path S1, S5, S2, i.e., after t2, Figure 4.7 reports the latency of those switches. It is worth

noting that S5 is characterized by a higher latency compared to other switches; indeed,

S5 is emulated on less performance hardware. Conversely, flow 123 is not involved in

the reconfiguration, showing that the implemented framework is able to select the single

traffic flow.

Figure 4.8: Flow bitrate: (a) flow 250; (b) flow 123. Mbps as a function of experiment time.

The telemetry workflow experiment has been repeated 10 times collecting also the

achieved end-to-end bit-rate of both flows. The results are illustrated in Figure 4.8,

including ten cyan lines reporting the specific result for each experiment and a single red

line reporting the average trend. Specifically, Figure 4.8(a) is related to traffic flow 250, it

shows that after t0 the rate is degraded, then it is partially recovered at time t2 when the

traffic is switched on the alternate path. It is worth noting that rerouting the traffic does

not guarantee the recovery of the overall bit-rate. In fact, the recovery path includes

switch S5 emulated on a less performing hardware with limited traffic capabilities. Figure

4.8(b) is related to traffic flow 123 that is not involved in the reconfiguration, thus after t0

the bit-rate results to be degraded and never recovered. Figure 4.8(a) shows that the

whole workflow takes about 6 seconds to be performed (i.e., t2 − t0). However, most of

this time is expended within the telemetry and monitoring platform (i.e., SLA Broker) as a

result of our configuration to trigger the alert.

Figure 4.9: Auxiliary panel view of switch latency for traffic flows 250 experiencing
network failure recovery excluding the Telemetry and Monitoring Platform. Latency [ns] as
a function of experiment time.

This time could be reduced by configuring the SLA Broker with higher SLA checking

rates on the InfluxDB filled by the Telemetry Collector. Therefore, to better evaluate the

achievable performance of the system, we have measured the re-configuration time

excluding the telemetry and monitoring platform from the workflow, i.e., the feedback to

the ONOS controller is directly generated by the Telemetry Collector. Figure 4.9 reports

the latency data collected by an auxiliary Grafana panel during the network

reconfiguration, when the reconfiguration is triggered directly by the Telemetry Collector

(i.e., thus excluding the influxdB and the SLA Broker). The experiment has been

repeated 10 times and the average time for performing the reconfiguration is 1.95

seconds that includes: the detection of the latency degradation at the Telemetry

Collector, all control plane procedures performed in ONOS (e.g., computation of an

alternate path), and P4 Runtime message exchange towards the involved switches.

5. DevOps for edge computing supporting AI

This deliverable has presented the main activities in year-3 of the BRAINE project
related to the design, prototype and implementation of the BRAINE WP3 components.
The deliverable dedicated a specific section for each task to show its main contributions.
The illustrated achievements include components functionalities and development
status. Moreover, the design of a novel Cognitive Framework is described in this
document. Finally, a list of all WP3 software components’ details and links to their
implementations in the BRAINE Gitlab account is also provided.

Over the last interaction, we have extended the vocabulary to support workflow
placement and description. The schema was extended to support Images descriptions
through Docker deployments descriptor format (Listing 5.2). Services, using Kubernetes
deployment descriptors (Listing 5.1) and Workflows using Argo description language
which is an extension of Kubernetes deployment description language itself. We call
those descriptions manifest. By relying on an attribute called manifest we allow the use
of the same model later to other existing description languages. Figure 5.1 gives an
overview of the vocabulary developed for resource management and service
deployment.

Figure 5.1: Excerpt of BRAINE schema (lift) highlighting Service, Workflow and Image
Descriptors.

kind: Pod

metadata:

 labels:

 run: helloworld

 name: helloworld

spec:

 runtimeClassName: rune

 containers:

 - command:

 - /bin/hello_world

 env:

 - name: RUNE_CARRIER

 value: occlum

 image: helloworld

 imagePullPolicy: IfNotPresent

 name: helloworld

 workingDir: /run/rune

EOF

Listing 5.1: Kubernetes manifest example.

FROM alpine

CMD ["echo", "Hello BRAINE!"]

Listing 5.2: Image manifest example.

In addition, we have also extended the vocabulary (Figure 5.2) allowing users to add
services, images and workflow register endpoints to the BRAINE knowledge graph. This
extension allows users to directly interact with the endpoints without the necessity of
using the Service or Image Orchestrator. This approach significantly simplifies the
deployment and management.

Figure 5.2: Excerpt of BRAINE vocabulary lift highlighting Workflow, Image and Service
Registries.

Workflow Definition For being open source and tightly integrated with Kubernetes, Argo
was chosen as the service workflow execution framework. In addition, it offers all
required functionalities in the project scope and users can describe workflows in a
declarative way using manifests in a similar fashion to those of Kubernetes and Docker.

With the addition of the Argo framework to the BRAINE software stack, it is possible to
define workflows through Argo workflow definition language (Listing 5.3). Argo can be
easily coupled with the overall project architecture and can be easily managed by the
user as well as by the system. Argo’s tight integration with Kubernetes, its declarative
workflow definitions, and its support for event processing make it the most suitable
candidate. It is likely that effort will be required to integrate Argo into the BRAINE
architecture and develop its functionality further; but this is preferable to building a

custom BRAINE solution from scratch, and may provide useful contributions to the
opensource solution. The full vocabulary is available under Creative Common CC-BY-
4.0 license at https://github.com/eccenca/braine-vocab.

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

 generateName: hello-world-

 labels:

 workflows.argoproj.io/archive-strategy: "false"

 annotations:

 workflows.argoproj.io/description: |

 This is a simple hello world example.

 You can also run it in Python: https://couler-proj.github.io/couler/examples/#hello-
world

spec:

 entrypoint: whalesay

 templates:

 - name: whalesay

 container:

 image: docker/whalesay:latest

 command: [cowsay]

 args: ["hello world"]

Listing 5.3: Example of workflow definition.

Registry Interfaces: In addition to the schema extension, we have also further
developed a BRAINE management webclient that allows the management of services,
images, workflows and their respective registries (Figure 5.3). Figure 5.4 displays the
Docker Image register window in CMEM, it allows users to register Docker images for
deployments. Figure 5.5 displays the Service Profile Register Window that allows the
registering of Services through Kubernetes Deployment description files. In both
windows there is an attribute manifest which is used to either register Kubernetes
Deployment descriptor in case of Service Profile and Docker Image Descriptor in case of
Docker Images.

https://github.com/eccenca/braine-vocab
https://couler-proj.github.io/couler/examples/#hello-world
https://couler-proj.github.io/couler/examples/#hello-world

Figure 5.3: BRAINE webclient.

Figure 5.4: BRAINE webclient Image Registry Web Interface.

Figure 5.5: BRAINE webclient Image Registry Web Interface.

6. Monitoring and SLA broker incorporation for transparency
and enforcement

To resolve system violations, the SLA Broker plays a crucial role. This section provides
an overview of the SLA Broker requirements for the BRAINE system, describes the
components that make up the BRAINE SLA Broker system, and demonstrates the
workflows involved in the process.

6.1. System requirements

The design and development of the BRAINE SLA Broker considered the following
system requirements:

• Policy-based system: A single-metric system (e.g., bandwidth) for failure

detection and handling may not be sufficient to properly resolve a failure. Context

is essential for system diagnosis, as different contexts may require distinct

solutions. A policy-based system enables the capture of a system violation

context based on several metrics and conditions. A BRAINE SLA Broker policy

consists of one or more rules, with each rule monitoring the violation of a metric

performance over a defined period. This includes the type of metric aggregation,

the number of violations within a defined period of time, the trigger type, and the

violation threshold. The violation type can be either one metric violation to trigger

the actuation or a combination of metric violations to trigger the actuation. Table

6.1 illustrates the fields of a rule, which can be generated using a POST REST

API request to “/rule/”. Note that a rule is only associated with one policy.

Field Type Description

ID UUID A returned value for a successful POST
request. The ID field can be used later to
retrieve, update, or delete the rule. This
value is system generated and will be
ignored if submitted for a new rule.

Name String Name of the rule.

OwnerID UUID Owner ID should match the owner ID of
the associated policy

Description String A description for the rule.

Parameter Dictionary Consists of the “endpoint”, type of
measurement provider (i.e., Prometheus,
InfulxDB, RESTapi, or message bus), field
name.

Operator String It is one of the following operators “>”, “<”,
“>=”, or “<=”. This field is used as
indication to interpret the threshold.

Period Integer Period is in seconds. It represents the
considered window to apply the rule. For
instance, Period equals 600s means the
window that the SLA rule is applied on is
the last 600 seconds (i.e. 10 mins).

Occurrence Integer The number of violations in the period to

trigger a rule violation.

Interval Integer Interval is in seconds. It is the time
interval to pull the metric read/reads from
an endpoint.

Threshold Double The threshold value

TriggerType Boolean “0” or critical means that the actuation can
be trigger only by violating this rule. “1” or
non-critical means that a number of this
type of rule (more than one should be
defined in the policy) need to be violated
to trigger an actuation.

PolicyID UUID The policy that a rule is associated with.

Table 6.1: Fields of the SLA rule

Table 6.2 illustrates the fields of an SLA policy entry, which can be generated
using POST RESTapi request to “/sla-broker/”.

Field Type Description

ID UUID A returned value for a successful POST
request. The ID field can be used later to
retrieve, update, or delete the policy. This
value is system generated and will be
ignored if submitted for a new policy.

Name String Name of the policy.

OwnerID UUID Owner ID

Description String A description for the policy.

RuleThreshold Integer The number of rule type “1” that required
to trigger an actuation.

Table 6.2: Fields of the SLA policy

Table 6.3 illustrates the fields of an actuation entry, which can be generated
using POST RESTapi request to “/actuation /”.

Field Type Description

ID UUID A returned value for a
successful POST request. The ID
field can be used later to retrieve,
update, or delete the actuation
entry. This value is system
generated and will be ignored if
submitted for a new actuation
entry.

Name String Name of the policy.

OwnerID UUID Owner ID

Description String A description for the policy.

Endpoint Dictionary It consists of the URL,
communication type (i.e.,
RESTapi or KAFKA), KAFKA

topic.

Message Dictionary/String/Value Dictionary lists the UUID of
violated rules. String and value
are fixed and provided by owner.

Table 6.3: Fields of the SLA actuation

• Metric endpoint: Metric values can come from several sources, including the

producer itself and aggregation points of a telemetry system. The BRAINE

Telemetry system provides several methods for retrieving telemetry values using

PIGPI, where PromQL and InfluxQL can be used to retrieve the measurements.

In some cases, the BRAINE Telemetry system also allows for telemetry retrieval

from the KAFKA bus.

• Metrics analysis: Telemetry data needs to be aggregated and analysed over a

period to produce output that can be relied upon to trigger actuations. The

analysis may consider patterns, a single metric, or multiple metrics.

• Actuation approaches: Violation of an SLA Broker policy results in one or more

actuations to handle the SLA policy violation. The actuation can be as simple as

sending an email to the owner or administrator about the violation. Additionally,

the actuation can be system-accommodated, such as scaling in or scaling out the

microservice deployment. Finally, the actuation can be application-specific, which

requires the microservice owner to provide the customized message format and

content to the SLA Broker.

6.2. System Components

6.2.1. SLA Broker Manager

Figure 6.1: the workflow for successfully instantiating SLA Analyzer and Manager
instances

Figure 6.1 illustrates the workflow for successfully instantiating SLA Analyzer and
Manager instances. Firstly, the BRAINE Authoring Tool requests the blueprint for
creating SLA rules, actuations, and policies from the BRAINE Blueprint Inventory (steps
1-2). Secondly, the BRAINE Authoring Tool customizes the SLA policy request based on
the SLA agreement and submits it to the BRAINE SLA Broker (step 3). Thirdly, the
BRAINE SLA Broker validates the telemetry and actuation endpoints (steps 4-9).
Fourthly, the SLA Broker requests the blueprints for the SLA Analyzer and Manager from

the BRAINE Blueprint Inventory (steps 10-11). Then, the SLA Broker customizes the
Analyzer instance to collect the targeted telemetry from the proper endpoints. The
customization of the Analyzer instance also includes customizing the communication
between the SLA Analyzer and Manager instances. Later, the SLA Broker requests the
related deployment and services from the BRAINE scheduler (steps 12-13). Finally, the
BRAINE SLA Broker confirms the deployment of the SLA Broker related instances to the
BRAINE Authoring Tool.

Figure 6.2: An example of an SLA Broker deployment

Figure 6.2 shows an example of an SLA Broker deployment. In the figure, the SLA
Analyzer consists of three metric scripts that pull telemetry readings from the Telemetry
System based on the interval fields in each rule submitted to this policy. In case of a rule
violation, the related script sends a notification message to the SLA Manager about the
violation. Based on the type and number of violated rules, the SLA Manager instance
communicates with the actuations.

6.2.2. SLA Analyzer instance

Figure 6.3: SLA Analyzer deployment

Figure 6.3 illustrates the deployment of Analyzer instances. As shown in the figure,
Analyzer instances are associated with persistent storage to ensure system monitoring
in case of Analyzer failure or crash. In the event of Analyzer failure, the scheduler
instantiates another Analyzer and mounts it to the persistent storage. An Analyzer
instance keeps a copy of all measurements and related analyses on the persistent
storage. Moreover, the figure shows that each rule is monitored by one script and that
the logs and readings are stored on the persistent storage.

6.2.3. SLA Manager Instance

The SLA Manager Instance is responsible for calling actuations based on the violations
of the rules reported by the SLA Analyzer. As mentioned earlier there are two types of
reactions for rule violation.

Figure 6.4: Reporting rule violation for an SLA Manager instance

Figure 6.4 shows the workflow of a reported rule violation for an SLA Manager instance.
In the case of a critical violation, the SLA Manager instance calls the actuations
immediately. However, in the case of a non-critical rule violation, the SLA Manager
instance adds the reported violation to the violation list. If the number of violations
exceeds the RuleThreshold, the actuations are triggered. It is worth mentioning that all
actuations in the policy are called. In cases where different actuations are expected
based on different rule violations, these are translated into different policies.

7. Conclusion

This report (i.e., the final report on the status of WP3 - part 2) concludes the efforts
made by BRAINE WP3 partners in five areas: the design of a novel Cognitive
Framework, the architecture of the Forecasting Functional Block (FFB), the challenges
and a solution for deploying K8s in edge computing environments, the extension of the
vocabulary to support workflow placement and description, and the design and
implementation of the SLA Broker.

The information presented in this report is expected to be useful for researchers and
practitioners in the field of edge computing, AI, and machine learning.

