

BRAINE - Big data Processing and Artificial Intelligence at the
Network Edge

Project Title: BRAINE - Big data Processing and Artificial
Intelligence at the Network Edge

Contract No: 876967 – BRAINE

Instrument: ECSEL Research and Innovation Action

Call: H2020-ECSEL-2019-2-RIA

Start of project: 1 May 2020

Duration: 36 months

Deliverable No: D3.3

Third report on the status of WP3

Due date of deliverable: 31 August 2022

Actual submission date: 01 February 2022

Version: 1.0

Project funded by the European Community under the
H2020 Programme for Research and Innovation.

Project ref. number 876967

2

Project title
BRAINE - Big data Processing and Artificial Intelligence at
the Network Edge

Deliverable title Final project report on the status of WP3 – Part 1

Deliverable number D3.3

Deliverable version Version 1.0

Previous version(s) -

Contractual date of
delivery

31 August 2022

Actual date of delivery 01 February 2023

Deliverable filename Final project report on the status of WP3 – Part 1

Nature of deliverable Report

Dissemination level PU

Number of pages 44

Work package WP3

Task(s) T3.1, T3.2, T3.3, T3.4

Partner responsible DELL

Author(s) Mustafa Al-Bado (Dell), Javad Chamanara (LUH), Edgard
Marx (ECC), Adam Flizikowski (ISW), Vojtěch Janů (CTU),
Radoslav Gerganov (VMware), Antonino Albanese (ITL),
Luca Valcarenghi (SSSA), Alessandro Pacini (SSSA),
Andrea Sgambelluri (SSSA), Emilio Paolini (SSSA).

Editor Mustafa Al-Bado (Dell)

Abstract

Keywords

Copyright

© Copyright 2020 BRAINE Consortium

3

This document may not be copied, reproduced, or modified in whole or in part for any
purpose without written permission from the BRAINE Consortium. In addition to such
written permission to copy, reproduce, or modify this document in whole or part, an
acknowledgement of the authors of the document and all applicable portions of the
copyright notice must be clearly referenced.

All rights reserved.

Deliverable history

Version Date Reason Revised by

00 01.08.2022 Table of Contents - version 00 Mustafa Al-Bado

01 18.11.2022 Proof reading Mustafa Al-Bado

02 23.11.2022 First review Mustafa Al-Bado

02 28.02.2023 Final review Mustafa Al-Bado

4

List of abbreviations and Acronyms

Abbreviation Meaning

5G 5th Generation

AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

CU Centralized Unit

DSP Digital Signal Processors

DU Distributed Unit

ECG ElectroCardioGram

EEG ElectroEncephaloGram

EMDC Edge Mobile Data Center

EPC Evolved Packet Core

ERP Enterprise Resource Planning

EU European Union

FPGA Field Programmable Gate Arrays

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

HRC Human-Robot Collaboration

iDT intelligent Digital Twin

ICT Information and Communication Technologies

IP Internet Protocol

IoMT Internet of Medical Things

IoT Internet of Things

IT Information Technology

KPI Key Performance Indicator

MES Manufacturing Execution Systems

MOD MOtif Discovery

PoC Proof of Concept

QSD Qualified Synthetic Data

RAN Radio Access Network

TBC To Be Confirmed

TBD To Be Defined

TCP Transmission Control Protocol

TLS Transport Layer Security

TFLOPS Tera Floating Point Operations Per Second

5

TSN Time-Sensitive Networking

UE User Equipment

URI Uniform Resource Identifier

URLCC Ultra-Reliable Low-Latency Communication

USRP Universal Software Radio Peripheral

6

Table of Contents

1. Executive summary ... 8

2. Introduction .. 9

2.1. Reported components ... 9

3. Mapping of AI Data-processing Workloads in Edge Nodes 11

3.1. Parameter predictor and placement agent for 5G vRAN.................................. 11

3.2. MOD Learning Module .. 13

3.2.1. Readiness and Performance .. 14

3.2.2. Comparison with State of the Art .. 15

3.3. Multiagent communication ... 16

3.3.1. Message Structure ... 16

3.3.2. Readiness and Performance .. 18

3.3.3. Comparison with State of the Art .. 18

3.4. Data processing pipeline for UC2 .. 19

3.4.1. Video Transcoding component - VTU... 19

3.4.2. Performance evaluation scenario ... 20

3.4.3. Test Results ... 21

4. Blockchain algorithms for resource collaboration ... 22

4.1. System description .. 22

4.1.1. Level of readiness .. 27

4.1.2. Performance vs state of the art .. 27

5. Repository of the edge node capabilities ... 29

5.1. Data Model.. 29

5.2. Registry Interfaces .. 32

5.3. Progress beyond state-of-the-art ... 34

5.4. Performance evaluation .. 35

6. L2 scheduler (slice scaling) for vRAN .. 37

6.1. Technical description .. 37

6.2. Workload prediction using AI/ML models .. 38

6.3. Test results ... 39

7. Conclusion... 43

8. References .. 44

7

List of Figures

Figure 2.1.1: An architecture diagram of where components integrate as part of the
overall BRAINE ... 10
Figure 3.1.1: 5G vRAN workload prediction and placement – BRAINE Rel1.0 11
Figure 3.1.2: 5G vRAN workload prediction and placement – BRAINE Rel2.0 12
Figure 3.2.1: The Learning pipeline of UC3 ... 14
Figure 3.2.2: Data for Model ID 1 from Table 2.2.2 .. 15
Figure 3.2.3: Data for Model ID 2 from Table 2.2.2 .. 15
Figure 3.3.1: Dockerized multiagent architecture from the point of view of the
communication .. 16
Figure 3.3.2: Performance test .. 18
Figure 3.4.1: High-level computation pipeline for UC2 ... 19
Figure 3.4.2: VTU block diagram ... 20
Figure 3.4.3: Performance evaluation scenario. .. 21
Figure 4.1.1: SLVP protocol messages ... 23
Figure 4.1.2: The Message attributes .. 24
Figure 4.1.3: The Fog server attributes.. 24
Figure 4.1.4: Thing attributes ... 25
Figure 4.1.5: The sequencer attributes .. 25
Figure 4.1.6: The CAS attributes ... 26
Figure 4.1.7: The Block attributes .. 26
Figure 4.1.8: The amount of communication (scattered dots) for the MT is typically better
than the standard Merkle-Patricia Trie (MPT, solid line) .. 28
Figure 5.1.1: Excerpt of BRAINE schema (lift) highlighting Service, Workflow and Image

Descriptors.. 30
Figure 5.1.2: Excerpt of BRAINE vocabulary lift highlighting Workflow, 31
Figure 5.2.1: BRAINE webclient. ... 33
Figure 5.2.2: BRAINE Web Client Image Registry Web Interface. 33
Figure 5.2.3: BRAINE webclient Service Registry Web Interface................................... 34
Figure 5.3.1: Old Architecture. ... 35
Figure 5.3.2: New Architecture. ... 35
Figure 5.4.1: Evaluating the semantic lifting of metrics to Corporate Memory (CMEM)
through Metrics relay. .. 36
Figure 6.1.1: Conceptual diagram of the vRAN data handling framework. 38
Figure 6.2.1: Data Usage for Workload Scheduling. .. 39
Figure 6.3.1: CPU workload prediction for proposed ML models. 40

8

1. Executive summary

Information technologies have evolved enormously in many domains. In addition, the

constraints of many applications elevate the need for edge computing. The BRAINE

Work Package 3 (WP3) is dedicated to delivering components to The BRAINE solution

that enable intelligent allocating, placement, and monitoring workloads in edge

environments. In this deliverable, we report the achievements that have been produced

regarding data-processing workloads, resource collaboration, and the Repository of the

edge nodes. Specifically, the current deliverable highlights the following achievements:

1) Mapping of AI data-processing workloads in Edge Nodes: This section provides in-

depth details for AI pipeline applications that run at edge nodes (5G vRAN, MOD

learning module, multiagent communication, and smart city video transcoding). The

delivered details include components readiness, performance, and the comparison with

state-of-the-art.

2) Blockchain algorithms for resource collaboration: Here, we present a profound

description of the used Byzantine agreement protocols, including readiness,

performance, and the comparison with state-of-the-art.

3) Repository of the edge node capabilities: This section presents the final version of the

BRAINE repository system that runs on edge nodes. The main focus is on the data

model, workflow definition, and registry interface functionalities derived from

instrumentation, monitoring, and classification sources. In addition, the section covers

components' readiness, performance, and the comparison with state-of-the-art.

4) L2 scheduler (slice scaling) for vRAN: This section focuses on detailing the

accomplishments of the L2 scheduler for virtual RAN.

9

2. Introduction

The edge computing environment is inherently heterogeneous and dynamic, with a vast
number of nodes that possess varying capabilities, characteristics, purposes, and
ownership. These properties are subject to change over time, making it a challenge to
effectively manage, control, and monitor the infrastructure and workloads running on it.
The solution is to dynamically allocate resources to applications as needed. The goal of
this deliverable is to report about the following:

• Mapping of AI data-processing workloads in Edge Nodes: This deliverable
section presents the functionalities of AI related components in WP3 including
performance, development and deployment details.

• Blockchain algorithms for resource collaboration: an in-depth description of
the used Byzantine agreement protocols, including readiness, performance, and
the comparison with state-of-the-art are presented.

• Data handling in edge nodes: This deliverable section will consist of dataset
generation to serve as inputs for AI-bound use cases, as well as software
systems for their resource-efficient ingestion and processing at the edge.

• Repository of the edge node capabilities: This section highlights the final
version of the BRAINE repository system that operates on edge nodes.
Emphasis is placed on the data model, workflow definition, and registry interface
features obtained from instrumentation, monitoring, and classification sources.
Furthermore, the section delves into the readiness, performance, and
comparison of the system's components with the-state-of-the-art.

• L2 scheduler (slice scaling) for vRAN: This section is dedicated to report
about the achievements of L2 scheduler for vRAN. The fundamental assumption
is that the existing EMDC has limited resources, such as CPU, memory, and
storage, allocated per 5G vRAN cluster (or group of pods). However, other
EMDCs in the federation can be utilized to increase the current vRAN capacity.
This can be achieved by disaggregating the vRAN and offloading specific parts of
its stack to the secondary EMDC.

2.1. Reported components

Table 2.1.1 lists the components reported in D3.3 including partners, components’
names and Figure 2.1.1 shows an architecture diagram of where these components
integrate as part of the overall BRAINE.

10

Partner Components Deliverable

FS MOD – Learning Module (C3.7) D3.3

CTU Multiagent Communication Tool (C3.14) D3.3

SMA Data Processing Pipeline (C3.15) D3.3

IMC Low bitrate blockchain protocols (C2.19) D3.3

ECC Registry Interfaces (C3.8.1) D3.3

ISW Placement Agent (C3.19) D3.3

ISW Parameter Predictor (C3.20) D3.3

ISW Baseline Scheduler 2 (C3.22) D3.3

Table 2.1.1: Reported components

Figure 2.1.1: An architecture diagram of where components integrate as part of the overall

BRAINE

C3.7

C3.14

C3.15
C2.19

C3.8.1

C3.19 C3.20
C3.22

11

3. Mapping of AI Data-processing Workloads in Edge Nodes

This section contains API specifications, implementation details, and endpoints for both
vertical and horizontal communication between AI workloads and other UC components
in the BRAINE edge environment..

3.1. Parameter predictor and placement agent for 5G vRAN

As regards the implementation of the L2 scheduler based on the workload placement
and prediction the current progress has been indicated below.

1. Metrics are collected with telemetry system
1.1. HW metrics (EMDC resources consumption) with Prometheus
1.2. Radio statistics (vRAN) collected in csv file

2. Telemetry sends data to dashboard (Grafana)
3. Telemetry system sends data to database located locally

3.1. EMDC metrics are sent in InfluxDB with HTTP requests
4. Parameter predictor makes predictions of resource consumption based on historical

data
4.1. Trained LSTM model stored locally
4.2. Parameter predictor receives data in csv file

5. Predicted values are sent to Placement agent
5.1. Placement agent makes a decision to perform vertical or horizontal

scaling

The architecture that is followed for that (prior to Braine 2.0 release) is the one
presented in Figure 3.1.1. It is deployed locally as the vRAN deployment in the CNIT
testbed is still in progress.

Figure 3.1.1: 5G vRAN workload prediction and placement – BRAINE Rel1.0

In the next stage (Braine 2.0) we will be implementing the “horizontal scaling” referring to
the network/slice modification approaches in 3GPP and ETSI, and the architecture
foreseen will be targeted like Figure 3.1.2.

12

Figure 3.1.2: 5G vRAN workload prediction and placement – BRAINE Rel2.0

The main components engaged are described below.

• ‘Cognitive framework’ is responsible for horizontal and vertical communication
between EMDCs with deployed vRAN.

• Telemetry system collects metrics from EMDC hardware and from vRAN radio
logs.

• Data is collected with Prometheus which sends collected data to InfluxDB
v1.8 via HTTP requests with port 3000.

• Currently, the database is located locally on the ISW machine, further it
will be deployed on the EMDC cluster as VolumeClaim. Also, Prometheus
sends data to the dashboard system and it can be accessed with port
3200.

• On the current stage radio statistics from vRAN are provided to the cognitive
framework, especially to the ML algorithm with a csv file which is updated each
second. Predictions are fed to the Placement Agent, which makes a decision
either to proceed with vertical or horizontal scaling for vRAN CU-UP.

• In the next step focusing will be on providing radio statistics exporting
from vRAN with the Prometheus instead of receiving data in csv files.
Another thing is containerizing the cognitive framework and deploying it
on a Kubernetes cluster.

• Also, deploying the InfluxDB database on EMDC will decrease latencies
and improve framework performance.

13

Component ID Component Name Development Owner

C3.20 Parameter Predictor 100% ISW

GitLab Repository:

Containerized: Y

Registered on BRAINE platform image registry: Y

Deployed as a pod and functional on BRAINE platform: Y

Integrated with other platform components: Y –

Status Report:

The predictor component is done and validated (release 1.0), results are collected for
the prediction accuracy (and delivered to journal). But at the moment we are waiting
for the developers to finalize implementation of the “Placement agent” in order to be
able to integrate together: Parameter Predictor, Placement Agent with the BRAINE
and admission control of the 5G vRAN.

Table 3.1.1: Component status

3.2. MOD Learning Module

The Learning module as an AI module for UC3 is incorporated into the BRAINE platform
on the deployment registry level and on the application runtime level (Table 3.2.1).
During the deployment of the application to the BRAINE Service Catalog, the Authoring
Frontend is used. The image is registered on the BRAINE platform image registry, from
where, BRAINE pods are built and started by end-users of the MOD application. For
that, BRAINE pod manifest is used – the SLA files.

Component ID Component Name Development Owner

C3.8 MOD – Learning module 100% FS

GitLab Repository: https://gitlab.com/braine/wp3-mod_learning_module-fs

Containerized: Y

Registered on BRAINE platform image registry: Y

Deployed as a pod and functional on BRAINE platform: Y

Integrated with other platform components: Y – Discovery Module and Detection
Module of MOD Application

Status Report:

Learning module is done, and it was tested on CNIT Braine Testbed. Currently this
component is being integrated within the UC3 and other modules of Motif Discovery
Tool (WP4).

Table 3.2.1: Component status

During application runtime deployment, the module connects to the rest of the MOD
modules using MQTT broker (exposed on port 1883, or 8883). Connecting namely to:

• Discovery module (WP4.2),

• Detection module (WP4.2),

• MOD core module with GUI

• DTwin on cloud (WP4.2).

Additionally, connection to two databases is required:

https://gitlab.com/braine/wp3-mod_learning_module-fs

14

• InfluxDB (usually port 8086, using InfluxDB v2 API – HTTP-based API) for raw
timeseries data

• MongoDB (usually port 27017, MongoDB API – HTTPS) for storing the resulting
learned models.

When required, new instances of each database or MQTT broker are started within the
app local network. All MOD services share the same virtual network using the BRAINE
Service Mesh as a transparent layer. For communication with the cloud-located DTwin
module, MQTT protocol is used and an initial direct upload of the referenced models to
the cloud-side MongoDB. All the databases use persistent volumes. The Learning
pipeline is depicted in Figure 3.2.1.

Figure 3.2.1: The Learning pipeline of UC3

3.2.1. Readiness and Performance

Tests on preliminarily collected datasets depicted in Figure 3.2.2 and Figure 3.2.3 lead

to a classification pipeline composition of 2 models with the performance metric of

Predictive Marginal Log-Likelihood (MLL) listed in Table 3.2.2.

The MLL measures the goodness of fit of the model on the given data. It is a logarithmic

measure and ranges in real numbers. The usual baseline is data-dependent, thus we

report also the baseline value for completely random model parameters (the untrained

model). The advantage of the MLL measure is that it can be applied on variable-length

examples and still gives comparable results. On the other hand, it can be applied only on

models that calculate probability of samples of the examples.

The models were trained on an internal benchmark dataset of 22 examples of model ID

1. and 28 examples of model ID 2. This benchmark dataset was obtained from the Motif

Discovery step, as described in D4.3.

15

Model
ID

Predictive MLL (higher
is better)

Untrained Model MLL
(baseline for comparison)

Speed (iterations/s)

1. 1.43 ± 0.03 -1.73 ± 0.06 40.78 ± 0.67

2. 2.93 ± 0.05 -1.38 ± 0.16 40.13 ± 2.78

Table 3.2.2: The classification accuracy was tested under the WP4 and reported in D4.3.

Figure 3.2.2: Data for Model ID 1 from Table 3.2.2

Figure 3.2.3: Data for Model ID 2 from Table 3.2.2

The training settings were picked as a tradeoff between model likelihood and its
complexity. This is a feature of this component that the models are tunable to fit the
needs of the particular user.

3.2.2. Comparison with State of the Art

Current commercially available methods provide approaches based on a typical
representant template that provides baseline to compare other examples to. In the
classification pipeline, the model with the best similarity is chosen as the class. For
example, the Trendalyze application provides tools for assisted selection of examples
that serve as a template which is searched for in the rest of the data [Trendalyze1,

16

Trendalyze2]. Such an approach lacks the context of the clustered examples which are
combined into our model. The price for our model-based approach is a higher
computational complexity, but this is addressed by the powerful HW developed in WP2.

3.3. Multiagent communication

The P2P communication implements a message structure based on FIPA ACL using
AMQP protocol. Each agent is equipped in the northbridge with a communication
mechanism that connects as a client to the RabbitMQ server and allows sending
messages to particular agents. The messages for each agent are stored in the agent's
queue from which the agent can retrieve the incoming message (See Figure 3.3.1).

Figure 3.3.1: Dockerized multiagent architecture from the point of view of the
communication

3.3.1. Message Structure

The message structure (in Table 3.3.1) is based on FIPA ACL Message Structure
Specification and is inspired by HTTP headers (RFC 6648, RFC 4229). The structure
was designed to give precise information about the current state and intentions of agents
participating in the conversation.

Name Based
on

Mandatory Description

Sender FIPA Yes Denotes the identity of the sender of the
message

Receiver FIPA Yes Denotes the identity of the intended
recipients of the message

https://datatracker.ietf.org/doc/html/rfc6648
https://datatracker.ietf.org/doc/html/rfc4229

17

Ontology FIPA No Denotes the ontology(s) or other knowledge
structure used to give meaning to the
symbols in the content expression

Message ID Custom Yes Used to identify the particular message in a
conversation

In reply to
Message ID

FIPA No Denotes an expression that references an
earlier action to which this message is a
reply

Reply to FIPA No This parameter indicates that subsequent
messages in this conversation thread are to
be directed to the agent named in the
reply-to parameter instead of to the

agent named in the sender parameter

Conversation
ID

FIPA No Introduces an expression (a conversation
identifier) that is used to identify the ongoing
sequence of communicative acts

Performative FIPA Yes Denotes the type of the communicative act
of the message

Communicati
on protocol

FIPA No Denotes the interaction protocol that the
sending agent is employing

Content
format

HTTP Yes Content type expressed as MIME type

Content
encoding

FIPA No Denotes the specific encoding of the
content

Timestamp HTTP No In HTTP called date. Contains the date

and time at which the message was
originated.

Authorization No It is used to provide credentials that
authenticate an agent.

Accept
content
format

HTTP No Denotes content types that the agent
understands. An example is text/json

Authenticate HTTP No Authentication methods ("challenges") might
be used to authenticate an agent. In HTTP
www-authenticate

Expires FIPA No Denotes a time and/or date expression
which indicates the latest time by which the
sending agent would like to receive a reply.
In FIPA called reply-by

Accept
encoding

HTTP No Denotes the content encoding that the
agent can understand

Cors HTTP No Denotes desire to block cross-origin\cross-
tenant communication

Content FIPA Yes Denotes the content of the message;
equivalently denotes the object of the
action. The meaning of the content of any

18

ACL message is intended to be interpreted
by the receiver of the message.

Table 3.3.1: Message fields of multi-agent communication

3.3.2. Readiness and Performance

The communication was tested on the same configuration of robots present in Testbed
for Industry 4.0. The configuration consists of four agents representing manipulators
KUKA Agilus, one agent representing Motrac monorail conveyor, and a register.

The goal of the setup was to negotiate ten steps in process of building of simple car
model. From Figure 3.3.2, we can see that the messaging system was responsive and
kept a maximum of two messages in a queue.

Figure 3.3.2: Performance test

3.3.3. Comparison with State of the Art

There are many archaic multiagent systems such as FIPA OS, JADE, or Cougaar, that
were trying to solve the problem of multiagent messaging. Problem is that those systems
were focused on different goals and none of them fulfills the requirements of a system
built on top of open-source and production-ready software that is still in maintenance
and suitable for industrial environment. The comparison with those systems is therefore
irrelevant. At the same time, there is no other system known to the authors, that has the
same focus.

19

3.4. Data processing pipeline for UC2

Use case 2 implements a live stream analytics pipeline composed of a few high-level

blocks, as depicted in Figure 3.4.1.

Figure 3.4.1: High-level computation pipeline for UC2

The pipeline is design to work on live captured traffic, although it might eventually

include storage components at different levels. For instance, one of the analytics

services could provide saving of results in a database.

The different processing blocks have heterogeneous requirements in terms of hardware,

with the Pre-processor and Analytics Service being the most demanding components. In

particular, the pre-processor is generally in charge of video/audio transcoding and

transformation. This is a generally expensive computation, which can benefit from widely

parallel processor architectures, such as GPUs. Likewise, the Analytics components can

employ Deep Learning algorithms, which in turn benefit from GPUs and other

accelerators.

The overall pipeline works therefore as follows: data stream collectors are connected to

the data stream sources, e.g., cameras, and work as an adaptation layer. This mostly

I/O workload has to do with protocol conversion and with the handling of connectivity

issues. The standard streams generated by the stream collector are then provided to the

pre-processor. As mentioned, this component performs transcoding, but also adaptation

of video rate and quality. In fact, the pre-processor offers an external interface that can

be leveraged by the platform orchestrator to adapt the video quality according to the

contextual resources’ constraints. The Data Fusion element that follows is a sort of

“data-hub and policy enforcement point”. It provides routing of the raw data streams to

the analytics service. This requires potential duplication of the streams, but also chaining

of the stream through multiple functions, before finally delivering it to the specific

analytics component. For instance, we show a case in which we perform face blurring on

a video stream before providing the video to an analytics service, in order to provide

privacy protection. The last component, the analytics services, finally receive the

modified stream and implement the custom analysis required by the specific application

use case.

3.4.1. Video Transcoding component - VTU

The VTU acts as data stream collector and pre-processor in the data processing pipeline

of UC2. It can convert audio and video streams from one format to another. The source

stream can originate from a file within the local storage system, or maybe a packetized

20

network stream. The requested transcoding service can be monodirectional, as in video

streaming, or bi-directional, like in videoconferencing. The transcoding capabilities of the

VTU are provided by Libav. Libav is an open-source library, which can handle a wide

variety of audio and video coding standards. For the most computationally intensive

video encoding tasks, the VTU relies on Graphical Processing Unit (GPU) resources. In

Figure 3.4.2 is depicted the block diagram of the SW component:

Figure 3.4.2: VTU block diagram

The main features of VTU are the following:

• Real-time video streaming management from different sources

• Video processing: transcoding, transrating, transizing

• Capability to share video among sources/users/applications

• Protocol support: rtmp, rtsp, http, hls, rtp, websocket.

3.4.2. Performance evaluation scenario

A performance evaluation was carried out on the testbed hosted at CNIT premises using

the BRAINE platform. Figure 3.4.3 shows the test scenario: a recorded video, locally

stored, is transcoded using first the x86 CPU and then a NVIDIA GPU hosted on the

PCIe bus. In particular, the output parameter used for the transcoding task are:

Codec: H.264:

• SW, using CPU - x264

• HW, using GPU – h264 nvenc

Bitrate: 2Mb/s

Video Size: full HD

Frame size: 25

21

Figure 3.4.3: Performance evaluation scenario.

3.4.3. Test Results

HW used
Frame per second

(max)
Speed

CPU 90 2,98x

GPU 342 11,4x

Table 3.4.1: CPU vs. GPU transcoding performance

As reported in Table 3.4.1, using a GPU allows for a 3.8x increase in transcoding
performance. Further tests will be carried out on the EMDC HW as it becomes available.

22

4. Blockchain algorithms for resource collaboration

4.1. System description

This section consists of adaptations and optimizations to Byzantine agreement protocols
used in KB from D3.1.2 based on findings of physical broadcast effects on edge
resources collaboration developed in WP2 (T2.3).

It was established earlier that the use of LoRa communications ensures stronger
resistance to interference. Due to the “capture effect”, the attacker signal has no effect
on the legitimate broadcast of the sequencer until the power of the interfering signal
exceeds that of the legitimate one by approximately 3db. When this happens, the
legitimate signal is completely suppressed by the attacker, rather than distorted beyond
the capabilities of the FEC. From the physical point of view, the attack has a hard edge,
all or nothing, so the usual AI based intercept methods are unlikely to provide sufficient
early warning at the physical level.

The blockchain communication on which our proposed resource collaboration is based,
must use robust protocols to safeguard against such attacks. We developed and
analysed a protocol, SLVP, and have found that it has the necessary security properties
that give us adequate defence against an “all or nothing” attacker.

The principle of the defense is that the protocol produces a thread of S-,LV- and P-
messages, each of which can be suppressed, but the IoT device monitors the
Sequencer’s broadcasts and will repeat blockchain submission until the correct message
is published intact on the blockchain (see Figure 4.1.1). Only then will the protocol
progress to the next message. This would be hazardous, since the attacker is able to
insert their own messages spoofing the user IoT device. However, due to the V-part of
the LV-message, and a special search algorithm sketched in the Verify column of the
last row, the Blockchain server is able to reject attack messages based solely on the
preservation of a short-term secret. The cryptography used in this is Post Quantum,
hash–based. The SLVP protocol makes it possible to remove intrusion detection from
the physical layer (where it is expensive, and resource limited) and rely entirely on the
blockchain client-server algorithms.

23

Figure 4.1.1: SLVP protocol messages

Component C2.19 consists of the following units:

1. PLS blockchain manager

2. PLS sequencer

3. Web client

4. IoT client

Unit 1 is developed using Flask in Python. The solution includes Content-Addressable
Store within the server’s security perimeter.

Unit 2 is prototyped as part of Unit 1 but will be separated out for uploading into a sealed
sequencer, prototyped as an IoT platform using Bluetooth and LoRa communications.

24

Unit 3 is based on the following API (see Figure 4.1.2 - Figure 4.1.7):

Message

Figure 4.1.2: The Message attributes

Message types

• PROOF_PLS

• LINK_PLS

• SIGNATURE_PLS

• ENROLMENT

• ACK

• FAIL

• SINGATURE_SLVP

• LINKVERIFY_SLVP

• PROOF_SLVP

Fog Server

Figure 4.1.3: The Fog server attributes

The main method is ‘receive’, which receives a message and processes it according to
its type.

25

Thing

Figure 4.1.4: Thing attributes

This is an emulation of the IoT platform.

Methods:

• enroll: register the client in the blockchain

• post: post user content on the blockchain

• get_contrib: obtain a list of contributions and adjunct hashes by user ID and block
number

• receive: receive a message and perform action depending on message type

Sequencer

Figure 4.1.5: The sequencer attributes

The sequencer class, emulating the PLS blockchain sequencer.

The main method is ‘broadcast’, intended for sending PLS messages to all blockchain

clients.

26

CAS

Content-addressable storage

Figure 4.1.6: The CAS attributes

Methods:

• deploy: deposit a record in CAS

• Retrieve: retrieve a record based on its hash

Block

The class of the block of the PLS blockchain

Figure 4.1.7: The Block attributes

All classes have been implemented. The Server and the Sequencer use the Python

Flask package to support the Web implementation of the API.

Unit 4 has not been developed yet.

Component ID Component Name Development Owner

C2.19 Low bitrate blockchain protocols 70% IMC

GitLab Repository: N/A

Containerized: N

Registered on BRAINE platform image registry: N

Deployed as a pod and functional on BRAINE platform: N

27

Integrated with other platform components: In progress

This component is being integrated with Use Case 1 applications

Table 4.1.1: BRAINE service mesh component for SLVP protocol

4.1.1. Level of readiness

The protocol stack and services have been implemented in Python to demonstrate the

feasibility of the blockchain solution based on the proposed protocols (See Table 4.1.1).

This comprises subsystems:

• Fog_server

• Sequencer

• IoT blockchain comms library

• CAS

The server-side code can remain in Python form due to the low rate of transactions in an

IoT swarm, which makes it possible to use interpreted code without risk of a

performance bottleneck. However, the IoT blockchain library requires an implementation

in C++ since that is the language low-power platforms are coded for to achieve the best

performance and resource utilisation.

IoT blockchain comms library in C++ is the main outstanding item.

4.1.2. Performance vs state of the art

The main problem for an underpowered IoT platform in using a block chain is access to

the blocks. Since the platform is communication-challenged (duty cycle of 1% or down to

0.1% on LoRa with a maximum of 50Kbits/sec, effective indexing is the key issue (see

[Shafarenko1]). We researched available indexing structures of the blocks and

developed an original one, the Merkle-Tunstall (MT) Tree, using which it has become

possible to reduce the communication load to suit the available bandwidth.

Figure 4.1.8 shows some evaluation data:

28

Figure 4.1.8: The amount of communication (scattered dots) for the MT is typically better
than the standard Merkle-Patricia Trie (MPT, solid line)

The vertical access is the average path length W from the root (which is the Root of

Trust) to a leaf for a swarm of 1024 IoT devices. The horizontal axis is for the probability

p for a given IoT device to contribute to any given block. We can see that the amount of

communication (scattered dots) for the MT is typically better than the standard Merkle-

Patricia Trie (MPT, solid line). At the same time, MT is a zero-cost solution for proofs of

absence. At p~0.1, the search for records is zero cost in 90% of the blocks, and in the

10% it is on a par or better than the standard MPT. This demonstrates that our solution

is up to an order of magnitude better than MPT (see [Shafarenko2]).

29

5. Repository of the edge node capabilities

This section presents the latest updates regarding the final version of the BRAINE
repository system that runs on edge nodes. The updates focus on the data model,
workflow definition, and registry interface functionalities derived from instrumentation,
monitoring, and classification sources.

5.1. Data Model

Over the last interaction, we have extended the vocabulary to support workflow placement and

description. The schema was extended to support Images descriptions through Docker

deployments descriptor format (Listing 5.1.2). Services, using Kubernetes deployment

descriptors (Listing 5.1.1) and Workflows using Argo description language which is an

extension of Kubernetes deployment description language itself. We call those descriptions

manifest. By relying on an attribute called manifest we allow the use of the same model later to

other existing description languages. Figure 5.1.1 gives an overview of the vocabulary

developed for resource management and service deployment.

30

Figure 5.1.1: Excerpt of BRAINE schema (lift) highlighting Service,
Workflow and Image Descriptors.

kind: Pod

metadata:

 labels:

 run: helloworld

 name: helloworld

spec:

 runtimeClassName: rune

 containers:

 - command:

 - /bin/hello_world

31

 env:

 - name: RUNE_CARRIER

 value: occlum

 image: helloworld

 imagePullPolicy: IfNotPresent

 name: helloworld

 workingDir: /run/rune

EOF

Listing 5.1.1: Kubernetes manifest example.

FROM alpine

CMD ["echo", "Hello BRAINE!"]

Listing 5.1.2: Image manifest example.

In addition, we have also extended the vocabulary (Figure 5.1.2) allowing users to add services,

images and workflow register endpoints to the BRAINE knowledge graph. This extension allows

users to directly interact with the endpoints without the necessity of using the Service or Image

Orchestrator. This approach significantly simplifies the deployment and management.

Figure 5.1.2: Excerpt of BRAINE vocabulary lift highlighting Workflow,

Workflow Definition For being open source and tightly integrated with Kubernetes, Argo
was chosen as the service workflow execution framework. In addition, it offers all
required functionalities in the project scope and users can describe workflows in a
declarative way using manifests in a similar fashion to those of Kubernetes and Docker.

With the addition of the Argo framework to the BRAINE software stack, it is possible to
define workflows through Argo workflow definition language (Listing 5.1.3). Argo can be
easily coupled with the overall project architecture and can be easily managed by the
user as well as by the system. Argo’s tight integration with Kubernetes, its declarative
workflow definitions, and its support for event processing make it the most suitable
candidate. It is likely that effort will be required to integrate Argo into the BRAINE
architecture and develop its functionality further; but this is preferable to building a
custom BRAINE solution from scratch and may provide useful contributions to the

32

opensource solution. The full vocabulary is available under Creative Common CC-BY-
4.0 license at https://github.com/eccenca/braine-vocab.

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

 generateName: hello-world-

 labels:

 workflows.argoproj.io/archive-strategy: "false"

 annotations:

 workflows.argoproj.io/description: |

 This is a simple hello world example.

 You can also run it in Python: https://couler-proj.github.io/couler/examples/#hello-
world

spec:

 entrypoint: whalesay

 templates:

 - name: whalesay

 container:

 image: docker/whalesay:latest

 command: [cowsay]

 args: ["hello world"]

Listing 5.1.3: Example of workflow definition.

5.2. Registry Interfaces

In addition to the schema extension, we have also further developed a BRAINE
management webclient that allows the management of services, images, workflows and
their respective registries (Figure 5.2.1). Figure 5.2.2 displays the Docker Image register
window in CMEM, it allows users to register Docker images for deployments. Figure
5.2.3 displays the Service Profile Register Window that allows the registering of Services
through Kubernetes Deployment description files. In both windows there is an attribute
manifest which is used to either register Kubernetes Deployment descriptor in case of
Service Profile and Docker Image Descriptor in case of Docker Images.

https://github.com/eccenca/braine-vocab
https://couler-proj.github.io/couler/examples/#hello-world
https://couler-proj.github.io/couler/examples/#hello-world

33

Figure 5.2.1: BRAINE webclient.

Figure 5.2.2: BRAINE Web Client Image Registry Web Interface.

34

Figure 5.2.3: BRAINE webclient Service Registry Web Interface.

5.3. Progress beyond state-of-the-art

The last work months were pivotal for consolidating advances not just in the data model
but as well in the architecture. We finish the first version of the full data model containing
all concepts necessary for managing distributed workloads by adding concepts such as
workflow registries as well as descriptors that allow us to describe and instantiate them.
This approach differentiates the BRAINE platform from other vendor solutions that focus
on different aspects of the distributed workload execution, BRAINE solution simplifies
the management by allowing users to manage the whole data model in a single data-
place.

Further we simplify the architecture from the previous version by developing a web-client
application that communicates directly with the different components in the BRAINE
architecture and simplify application usage by hiding complex communication APIs and
protocols through friendly user interfaces. Figure 5.3.1 shows the old architecture while
Figure 5.3.2 shows the new one. It is possible to see the removal of two components
and the addition of the BRAINE Web Client. Besides the addition of the Workflow
Engine, in the new architecture there is no need for the Service and Image Orchestrators
since the BRAINE Web Client communicates directly with the Workflow Engine as well
as Global Service and Image registries.

35

Figure 5.3.1: Old Architecture.

Figure 5.3.2: New Architecture.

5.4. Performance evaluation

To measure the performance of consuming data through Metrics EMDC consumer and
to evaluate the scalability of the approach we measure the semantic lifting in four
different scenarios. All data used in this scenario were synthetically generated, based on
previously collected data. The synthetic generated dataset simulates ten clusters
generating metrics data simultaneously. We measure the data lifting off on 10, 100,
1000, and 10000 data points. The graph in Figure 5.4.1 shows that the semantic lifting
scale linearly growing from 10 to 10000 metrics while reducing the processing time per
entry from approximately 0.5 seconds to 2 milliseconds at its pick. This discrepancy is
due to Metrics relay network performance optimization that transmits the whole read
metric data chunk at time instead of individual entries.

36

Figure 5.4.1: Evaluating the semantic lifting of metrics to Corporate Memory (CMEM)
through Metrics relay.

37

6. L2 scheduler (slice scaling) for vRAN

6.1. Technical description

The main assumption is thus that the current EMDC has resources (CPU, MEM,
storage) that are limited to a certain quota - per 5G vRAN cluster (or set of pods). But
there are alternative EMDC’s available in the federation where resources can be used to
expand the current footprint of the vRAN. Here the vRAN would benefit from its
disaggregation in order to offload only a part of its stack to the secondary EMDC.

The scaling (or L2 scheduling) function is considered after the 3GPP auto-scaling high
level feature that is considered in order to perform slice on-the-flight reconfiguration
when necessary. As such it works based on the architectural assumptions and
capabilities of the BRAINE architecture. Therefore, the scaling is functionality made for
the purpose of user data handling at scale. We are dealing solely with the CU-UP so the
user-plane data is being offloaded to a EMDC in the current federation. At the current
stage of 5G vRAN deployment it is already a function that poses a challenge for the
dynamic and online adaptation of the vRAN that is not available on the market. The
major interaction of the vRAN with AI/ML adjustment is via Workload Placement Agent in
cooperation with the micro-orchestrator in order to a) find appropriate EMDC and b) to
orchestrate an instance of CU-UP in that EMDC prior to user data request being
redirected there from the primary EMDC. That is why the relatively high “look ahead
time” from prediction models (Prediction Agent) would be beneficial in order to
successfully prepare all the workload activities in the other EMDC in advance.

Therefore, the vRAN is consuming the inputs from the BRAINE Workload Placement
Agent which is aware of the current traffic demand and the future predictions thereof.
The predictions are provided by the AI/ML models of the Prediction Agent that is
consuming telemetry data from vRAN and the K8 cluster/pods. The metrics are related
to the RU/DU/CU components of the vRAN. As such Workload Placement agent is
tightly coupled with the operation of the admission controller (AC) inside the vRAN stack,
as well as the micro-orchestrator of the vRAN - the latter being the proprietary solution
participating to the workload scheduling of selected vRAN component. The component
currently selected for scaling is centralized unit (CU). CU contains protocols that are not
real-time bound, they can operate even if latencies are relatively higher that in a real-
time regime. That is why the CU itself can operate easily in the cloud - but this does not
assume scaling mechanisms themselves so far (as this feature is under development).

From this perspective we are considering the interactions between 5G stack and the
BRAINE architecture according to the figure (Figure 6.1.1) below.

38

Figure 6.1.1: Conceptual diagram of the vRAN data handling framework.

In the figure there is virtual 5G network (with only vRAN and RIC presented for clarity)
instantiated in the EMDC as K8 pods (part of a cluster). Inside the vRAN there are all the
essential boxes (yellow ones) that constitute the 5G radio stack. The blue boxes
represent the boundary of the 5G vRAN/network which constitutes the workload that is
under study in both the WP3 and WP4 - so for scaling and for data handling at scale.
The central element as regards the network scaling is the Workload Prediction Agent,
cooperating with the Workload Placement Agent. The two components are collecting
and processing metrics from multiple sources: a) the BRAINE DKB delivering CPU, RAM
and in future also networking indicators of the external EMDC nodes, b) local resources
of the EMDC K8 cluster where the 5G vRAN is deployed (as pods) and c) the radio
resources provided by the Key Performance Metrics captured from the radio stack and
delivered over the E2 interface to the KPM xApp and exposed outside vRAN to the
BRAINE Workload Prediction and Workload Placement agents. Having the metrics
collected, the decisions of the local admission controller (AC) together with the Workload
Placement Agent, needs to cooperate in order to decide for the micro-orchestrator (telco
aware). It is the micro-orchestrator that is responsible to deploy selected part of the
disaggregated 5G when necessary.

In the above configuration the following programming languages are used:

• vRAN - C99

• xApps - JAVA

• Workload Prediction - python + pyTorch

• Workload Placement - python + pyTorch.

6.2. Workload prediction using AI/ML models

We use a practical deployment framework which demonstrates 5G vRAN components
deployed as the Kubernetes pods in the EMDC. In order to provide access to a
comprehensive set of metrics of 5G vRAN a framework based on Prometheus exporters,
Grafana for visualization and InfluxDB are utilized. With such instrumentation it is
possible to accurately profile resource consumption of both (i) computing and (ii) radio
metrics. Based on such profiling various AI/ML models (e.g., ARIMA, LSTM, and N-
BEATS) can be trained in order to be able to predict resource demand.

39

Figure 6.2.1 demonstrates 5G DU CPU consumption for 2 hours. This scenario was
used to train the long short-term memory (LSTM) model to forecast CPU consumption.
In order to support data handling in such edge networks where high level of flexibility of
load placement and migration are essential, we have performed some vRAN profiling
sessions. During such profiling sessions we have focused mainly on the CPU usage,
depending on the number of users.

Figure 6.2.1: Data Usage for Workload Scheduling.

The top plot presents the DU unit CPU values evolution in time. It can be seen that
variation of CPU is relatively high at times and can reach beyond the 100 percent - in
case 2 UEs are actively using the YouTube sessions (e.g., from 10:05). The bottom plot
on the other hand demonstrates the time evolution of the zoomed-in 2-minute CPU
readings when the CPU usage is evolving towards exceeding the maximum thresholds
(virtual machine quota). Having the predicted CPU behaviour ahead of it exceeding the
threshold - the system could trigger the auto-scaling of vRAN CU e.g., to another EMDC
server in the federation of servers.

This way owing to KPI metrics time evolution it is possible to apply AI/ML (e.g., LSTM,
ARIMA (transfer learning), N-Beats or similar) to build prediction models. With such
prediction models it is then possible to properly scale vRAN resources depending on the
user's traffic envelope changes. In our case scaling is considering the horizontal-scaling
of CU between edge servers. This way PDCP related, encryption based PDU processing
can become more adapted to traffic changes according to a typical tidal effect.

6.3. Test results

In our experiment, the scenario model consisted of 6902 observations made each
second, which is almost 2 hours of CPU usage from vRAN. This scenario observed
several metrics such as throughput, primary resource block (PRBs), UEs connection,
sending and receiving data etc.
We ran different size data pictures via email for transmitting purposes and also ran
different quality YouTube videos ranging from 720p to 1440p for receiving purposes. We
got the dataset from running the vRAN in this experimental setup.

40

Obtained dataset was split to train and validation in 80:20 ratio, thus train data
comprised 96 minutes of observation and for validation there was 24 minutes
observation of CPU usage.

For this experiment, we used a 5G network deployed on the EMDC which consists of
servers on different network configurations. In the EMDC, the centralized unit (CU) and
distributed unit (DU) can be deployed as VNF on one server with Kubernetes cluster and
radio unit (RU) connected as USRP (i.e., RF front end) on another server, where a
physical layer is deployed as Docker Swarm. We considered a commercial UE to
establish connectivity for data sending and receiving. Based on the collection data, we
have built several ML models for workload prediction and results will be described in the
following sections.

In this section, we evaluate the performance of the proposed ML-based workload
prediction algorithms by collecting the data from the experimental setup. All analytical
results were performed by using the PyTorch library in Python [23] where ML-based
models are trained and tested based on the data collected from the real-time test
scenarios running in the testbed.

We describe the modelling process of the ARIMA. Firstly, obtained data from the
experiment was tested on autocorrelation and stationary to train the ARIMA model.
Applying Dickey-Fuller test [24] to the data, we conclude that our series is stationary,
thus order of differencing is set to (d=0). For the ARIMA model, we selected the
autoregressive parameter (p) and moving average (q) as 2 and 20. As a result we
obtained an ARIMA model with parameters (2,0,10) and it was trained on the training
dataset.

On each step the model was trained with 20 historical observations and then trained
models predicted future CPU usage. At the same time weights of the trained model were
adjusted based on current observations. In other words, transfer learning of the ARIMA
model (Figure 6.3.1-a) is an iterative process in which the model is retrained after
prediction. Figure 6.3.1 presents the prediction on validation dataset of CPU utilization
by vRAN. With transfer learning approach performance of the model is much better than
predictions based on the model without retraining.

Figure 6.3.1: CPU workload prediction for proposed ML models.

The advantages of LSTM over recurrent neural networks (RNN) are the ability to forget
or to take into account long-term dependencies. For training the LSTM model dataset
was processed with a sliding window technique where the window was set to 151
records (2.5 minutes). After the transformation, the train dataset had 6599 windows with
151 records each and the validation dataset transformed to 1381 windows with the same
number of observations.
Before training initial weights of the model were provided with uniform distribution U[-

0.08,0.08]. For this modelling, we set the hyper parameter values as follows: epoch to 600,
learning rate to 0.03, hidden states to 55, recurrent layer to 1, and dropout to 0.1. Figure

41

6.3.1b shows the workload prediction for LSTM models. Performance of the LSTM
model is quite lower than the ARIMA model with transfer learning, but the LSTM model
has advantage in application and deployment on the EMDC and it does not require
additional computation resources in comparison with transfer learning with ARIMA.
To train this model we used multivariate time series data which in addition to CPU usage
parameter comprises number of connected user equipment (UEs) as presented as
categorical variables. In the first stage of N-BEATS training vanilla model was trained to
find optimal initial learning rate with learning rate range test [25]. From the test we
obtained that initial learning rate equals (21 * 10^-4). For other hyper parameters, we set
the values as follows: number of blocks to 2, number of fully connected layers to 4, size
of fully connected layers to [300, 2048]. Workload prediction of CPU usage by N-BEATS
model presented in Figure 6.3.1c and its result is the worst among the three models. In
order to measure the accuracy of the specified models, we consider mean absolute error
(MAE) and mean absolute percentage error (MAPE). MAE indicates the difference
between predicted value and true value of an observation. Also, MAPE defines the
statistical measurement accuracy of a ML algorithm for a fixed dataset. Both terms are
referred to as a loss function for defining error by the model evaluation. To reflect the
effectiveness of the ML models, we got the experimental values of MAE (5.09, 6.40, and
14.21) and MAPE (0.14, 0.20, and 0.38) in case of ARIMA, LSTM, and N-BEATS,
respectively.
Table 6.3.1 and Table 6.3.2 show the states of the presented components.

Component ID Component Name Development Owner

C3.19 Placement Agent 60% ISW

GitLab Repository:

Containerized: Y

Registered on BRAINE platform image registry: Y

Deployed as a pod and functional on BRAINE platform: Y

Integrated with other platform components: Y –

Status Report:

Placement agent is under development, it will be integrated with the mini-orchestrator

of the 5G vRAN. The focus now is on mechanisms of the “scheduling” (scaling)

between machines, as they require certain activities on the side of stack (relinking the

DU module with CU-UP / CU-CP modules) for the 3GPP F1 and E1 interfaces.

Table 6.3.1: Component status (C3.19).

Component ID Component Name Development Owner

C3.22 Baseline Scheduler 2 100% ISW

GitLab Repository:

Containerized: Y

Registered on BRAINE platform image registry: Y

Deployed as a pod and functional on BRAINE platform: Y

Integrated with other platform components: Y –

Status Report:

The scheduler is under development with our implementation team. Developments

42

require the update of the 5G vRAN adjustments to make sure that when needed for

5G workload to scale, it will be possible to scale the CU-UP (user plane) functionalities

of the CU (centralized unit). Additionally, the integration with the DKB agent will be

required on our side.

Table 6.3.2: Component status (C3.22).

43

7. Conclusion

This report (i.e., the final report on the status of WP3 - part 1) concludes the efforts
made by BRAINE WP3 partners in three areas: 1) Mapping of AI data-processing
workloads in Edge Nodes, Blockchain algorithms for resource collaboration, and
Repository of the edge node capabilities. Mainly, the report describes the workflow,
interfaces, functionalities, readiness status, performance, and the comparison with the
state-of-the-art for all the areas mentioned above. In addition, the report includes links to
the software implementations in the BRAINE Gitlab account.

44

8. References

[Helsinger]: Helsinger, Aaron et al. “Cougaar: a scalable, distributed multi-agent
architecture.” 2004 IEEE International Conference on Systems, Man and Cybernetics
(IEEE Cat. No.04CH37583) 2 (2004): 1910-1917 vol.2.

[Omicini]: Omicini, Andrea. “L1 – JADE: Java Agent DEvelopment Framework.” (2015).

[Poslad]: Poslad, Stefan et al. “The FIPA-OS agent platform: Open Source for Open
Standards.” (2006).

[Shafarenko1]: Shafarenko, A.. (2021). A PLS blockchain for IoT applications: protocols
and architecture. Cybersecurity. 4. 4. 10.1186/s42400-020-00068-0.

[]Shafarenko2: Shafarenko, A.. (2021). Indexing structures for the PLS blockchain.
Cybersecurity. 4. 10.1186/s42400-021-00101-w.

[Trendalyze1]: Time Series Intelligence and AI 3.0, whitepaper,
https://trendalyze.com/wp-content/uploads/2019/12/Trendalyze-Introduction.pdf

[Trendalyze2]: Scientific Approach for Visual Motif Discovery, whitepaper,
https://trendalyze.com/wp-content/uploads/2019/02/Scientific-Approach-of-Visual-Motif-
Discovery.pdf

