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1. Executive summary 

Edge computing has increasingly become an integral part of many applications (e.g. 

mission critical apps), which led to adopting the edge computing concept in several 

standards in mobile networks (e.g., 5G) and industrial manufacturing. This work package 

(WP) addresses key aspects of edge networks. Mainly, WP3 covers intelligent 

allocating, placement, and monitoring workloads in edge environments. This document 

reports the progress and development in research studies, architecture design, 

components development in edge resource collaboration, resource management and 

service deployment, AI/ML-based workload placement, and monitoring infrastructure.  

Specifically, the current deliverable highlights the following achievements:  

• In Task 3.1, the service mesh component's development is completed to enable 

cross-cluster communication between BRAINE services. Moreover, a message 

structure is implemented for the multiagent communication based on FIPA ACL 

using AMQP protocol. Regarding SDN network controller, the development 

focused on adding features to the P4 driver to support forwarding of traffic 

generated among K8s pods and postcard telemetry on traffic flows generated 

among K8s PODs, in addition to exploring an alternative approach for 

hierarchical controllers' architecture based on inter-Controller communication. 

Finally, the efficiency of the physical layer security (PLS) blockchain was 

investigated. 

• In Task 3.2, firstly, new features have been added to the Resource Management 

& Service Description, such as the vocabulary for Kubernetes service 

deployment and resource management and interfaces to register applications 

and services and create service catalogues for deployment. Secondly, MEC 

platform applications deployment has been implemented and integrated with the 

BRAINE platform. Finally, SLA broker architecture is designed and implemented 

for a distributed edge environment.   

• In Task 3.3, firstly, several features have been added to the BRAINE scheduler, 

such as enabling reinforcement learning. Secondly, a cognitive framework is 

designed to host the platform intelligence and used as-a-service (i.e., cognitive-

as-a-service) for the rest of the system. Finally, two AI/ML use-cases are 

presented in the context of BRAINE about vRAN workload forecasting and 

prediction and image processing for smart cities applications. 

• In Task 3.4, three components have been developed in the network telemetry 

framework: telemetry monitors, adapters and ingesters. Moreover, the Telegraf 

agent for 5G data collection has been successfully integrated with the telemetry 

system. 
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2. Edge resource collaboration 

2.1.          Service Mesh 

The service mesh component is responsible for building a service mesh between EMDC 
clusters and allows cross cluster communication between BRAINE services. It exposes 
a REST API which is defined below. The source code is available at 
https://gitlab.com/braine/braine-mesh 

2.1.1. Adding EMDC cluster 

Adds EMDC cluster to the service mesh by uploading k8s config file 

POST /emdc 

Parameters are specified in Table 2.1 

Table 2.1 Add EMDC parameters 

Name Type Description 

emdc multipart/form-data Kubernetes configuration 
file 

2.1.2. Retrieve EMDC cluster 

Retrieves the EMDC cluster with the specified id. The "host" field in the response 
specifies the master node of the EMDC. 

GET /emdc/{id} 

Parameters are specified in Table 2.2 

Table 2.2 Retrieve EMDC parameters 

Name Type Description 

id Int The id of the EMDC 

Response: 

Status: 200 OK 

{ 

  "id":0, 

  "host":"https://10.185.99.10:6443" 

} 

2.1.3. Listing all EMDC clusters 

Retrieves all EMDC clusters which are registered in the service mesh. 

GET /emdcs 

Response: 

Status: 200 OK 

[ 

  {"id":0,"host":"https://10.185.99.10:6443"}, 

https://gitlab.com/braine/braine-mesh
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  {"id":1,"host":"https://10.78.210.149:6443"} 

] 

2.1.4. Deleting EMDC cluster 

Deletes the EMDC cluster with the specified id from the service mesh. 

DELETE /emdc/{id} 

Parameters are specified in Table 2.3 

Table 2.3 Delete EMDC parameters 

Name Type Description 

id Int The id of the EMDC 

2.1.5. Listing all service entries in EMDC 

Retrieves all service entry in the EMDC with the specified id. 

GET /emdc/{id}/serviceentries 

Parameters are specified in Table 2.4 

Table 2.4 List all service entries parameters 

Name Type Description 

id int The id of the EMDC 

2.1.6. Creating new service entry 

Creates new service entry in the EMDC with id “id1” and the specified namespace. The 
host should be of the form <name>.<namespace>.global where 

<name>.<namespace> is a service running in EMDC with id “id2”. 

POST /emdc/{id1}/serviceentry/create/{id2} 

Parameters are specified in Table 2.5 

Table 2.5 Create new service entry parameters 

Name Type Description 

id1 int The id of the EMDC where 
the service entry will be 
created 

id2 int The id of the target EMDC 

name string The name of the service 
entry 

host string The hostname of the 
service entry 

namespace string The namespace of the 
service entry 

portnumber int The portnumber of the 
target service 
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protocol string The protocol of the target 
service 

2.1.7. Deleting service entry 

Deletes the service entry with the specified uuid in the EMDC with the given id. 

DELETE /emdc/{id}/serviceentry/{uuid} 

Parameters are specified in Table 2.6 

Table 2.6 Delete service entry parameters 

Name Type Description 

id int The id of the EMDC 

uuid string The uuid of the service 
entry 

2.1.8. Retrieve service entry 

Retrieves the service entry with the specified uuid in the EMDC with the given id 

GET /emdc/{id}/serviceentry/{uuid} 

Parameters are specified in Table 2.7 

Table 2.7 Retrieve service entry parameters 

Name Type Description 

id int The id of the EMDC 

uuid string The uuid of the service 
entry 

Response: 

Status: 200 OK 

{ 

  "uuid":"ce1ce847-0f1e-40e8-92ac-9922aedf6e55", 

  "name":"plot", 

  "portnumber":80, 

  "protocol":"http", 

  "host":"plot.gpu.global", 

  "namespace":"x86" 

} 

 

2.2.          Multiagent communication 

The P2P communication implements a message structure based on FIPA ACL using 
AMQP protocol. Each agent is equipped in the northbridge with a communication 
mechanism that connects as a client to the RabbitMQ server and allows sending 
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messages to particular agents. The messages for each agent are stored in the agent's 
queue from which the agent can retrieve the incoming message (See Figure 2.1). 

 

Figure 2.1: Dockerized multiagent architecture from the point of view of the 
communication 

2.2.1.  Message Structure 

The message structure (Table 2.8) is based on FIPA ACL Message Structure 
Specification and is inspired by HTTP headers (RFC 6648, RFC 4229). The structure 
was designed to give precise information about the current state and intentions of agents 
participating in the conversation. 

  

Table 2.8: Message fields of multi-agent communication  

Name Based 
on 

Mandat
ory 

Description 

Sender FIPA Yes Denotes the identity of the sender of the 
message 

Receiver FIPA Yes Denotes the identity of the intended recipients 
of the message 

Ontology FIPA No Denotes the ontology(s) or other knowledge 
structure used to give meaning to the symbols 
in the content expression 

Message ID Custom Yes Used to identify the particular message in a 
conversation 

In reply to 
Message ID 

FIPA No Denotes an expression that references an 
earlier action to which this message is a reply 

Reply to FIPA No This parameter indicates that subsequent 
messages in this conversation thread are to be 

https://datatracker.ietf.org/doc/html/rfc6648
https://datatracker.ietf.org/doc/html/rfc4229
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directed to the agent named in the reply-to 

parameter instead of to the agent named in the 
sender parameter 

Conversation 
ID 

FIPA No Introduces an expression (a conversation 
identifier) that is used to identify the ongoing 
sequence of communicative acts 

Performative FIPA Yes Denotes the type of the communicative act of 
the message 

Communicati
on protocol 

FIPA No Denotes the interaction protocol that the 
sending agent is employing 

Content 
format 

HTTP Yes Content type expressed as MIME type 

Content 
encoding 

FIPA No Denotes the specific encoding of the content 

Timestamp HTTP No In HTTP called date. Contains the date and 

time at which the message was originated. 

Authorization   No It is used to provide credentials that 
authenticate an agent. 

Accept 
content 
format 

HTTP No Denotes content types that the agent 
understands. An example is text/json 

Authenticate HTTP No Authentication methods ("challenges") might be 
used to authenticate an agent. In HTTP www-
authenticate 

Expires FIPA No Denotes a time and/or date expression which 
indicates the latest time by which the sending 
agent would like to receive a reply. In FIPA 
called reply-by 

Accept 
encoding 

HTTP No Denotes the content encoding that the agent 
can understand 

Cors HTTP No Denotes desire to block cross-origin\cross-
tenant communication 

Content FIPA Yes Denotes the content of the message; 
equivalently denotes the object of the action. 
The meaning of the content of any ACL 
message is intended to be interpreted by the 
receiver of the message. 

  

2.2.2.       Communication infrastructure setup 

The format for the multiagent communication uses used AMQP protocol, and the 
RabbitMQ is used as a broker. From the AMQP model, a message queue is bound to 
each agent, and for the exchange is used the direct exchange that allows P2P 
messaging. Inside the agents, the communication mechanism uses asynchronous 
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message processing based on asynchronous execution support in the Spring 
framework, built on the top of the Join/Fork framework. 

 

2.3. SDN network controller 

The ONOS SDN controller has to be deployed in each EMDC. Figure 2.2 reports the 
main components that we have specifically deployed for the BRAINE project.  

  

Figure 2.2: main components of the BRAINE SDN controller. 

The components detailed below were developed in the previous reporting period, and 
deeply described in the D3.1 document. 

• The REST APIs library on the north-bound interface to interact with the EMDC 
orchestrator is fully functional (e.g., to receive request for the configuration of a 
new connectivity). 

• The CLI command library on the north-bound interface to interact with human 
users. This interface is especially useful during development for testing purpose. 

• The BRAINE application that utilizes the ONOS core services to deploy the 
requests received from the REST APIs and the CLI commands. 

In the current period the development work has focused on the P4 driver that has been 
extended to connect and install flow rules on P4 devices for supporting: (i) forwarding of 
traffic generated among K8s PODs; (ii) postcard telemetry on traffic flows generated 
among K8s PODs. 

Moreover, several upgrades to the REST and CLI interfaces have been applied for 
enabling the integration toward the K8s orchestrator and other BRAINE components, 
such as the SLA broker and the Telemetry system.   

Finally, a deep testing/debugging campaign has been accomplished and the ONOS 
BRAINE controller has been demonstrated live in the OFC conference in March 2022. 
More details are reported in Section 2.3.1.    

The software component described above have been released in two software package 
that can be dynamically installed on a running ONOS controller. The current version of 
the software package is available at:  

• https://gitlab.com/braine/WP3-SDN-CONTROLLER 

• https://gitlab.com/braine/wp3-sdn-controller-p4 

Moreover, advanced hierarchical architectures of ONOS controllers have been studied 

to operate in multi EMDC scenarios allowing the control of multi-layer networks including 

hybrid packet/optical nodes. 

https://gitlab.com/braine/WP3-SDN-CONTROLLER
https://gitlab.com/braine/wp3-sdn-controller-p4
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2.3.1. Extended In-Band Telemetry for Monitoring-Driven Traffic 
Steering 

This section reports on a first implementation of P4-based telemetry tool (i.e., inband 
telemetry). This work represents an important step toward the implementation of the 
BRAINE EMDC architecture illustrated in Figure 2.3, but is focused on the telemetry 
implementation at the P4-device level, i.e., it is not configurable by the SDN controller. 
The work progress in this direction, i.e., enabling the SDN control of P4-based telemetry 
is ongoing and is based on the SDN controller application reported in the previous 
section. A first set of results regarding the control of telemetry by the SDN controller will 
be reported in D5.4, including a detailed description of the integration of the SDN 
controller with other EMDC components.  

The P4-based EMDC solution reported in this section support in-band telemetry (INT). 
INT is a specifically designed header that can be added/modified/removed, reporting 
useful metadata such as the time spent in the outgoing queue [Paol]. The analysis of 
retrieved INT data on accumulated delay can drive innovative dynamic packet 
scheduling solutions (e.g., dynamic per-packet classification and priority enforcement), 
minimizing jitter and maximum experienced end-to-end latency. Furthermore, INT data 
could be exploited to derive long term statistics of latency/service performance across 
the whole network, potentially leading to global network re-optimizations to be enforced 
by the SDN Controller, possibly leveraging on AI-based adaptive strategies. 

A relevant use-case to exploit INT-based solutions at the edge is to enable the user 
equipment (UE) of a 5G network to directly enforce to its outgoing packets the INT extra-
header (e.g., relying on an embedded P4 software implementation). Indeed, monitoring 
the actual performance (e.g., latency) of selected applications across the whole e2e path 
is often not possible given the presence of multiple providers, roaming between 5G 
Operators, edge and cloud providers, and transport network operator(s). On the other 
hand, extending INT from the UE enables accurate latency monitoring of the whole e2e 
path, including both the wireless and wired segments, even if operated by different 
service providers. Other important used cases includes 5G offloading and decentralized 
cybersecurity [Cugi]. 

 

Figure 2.3: BRAINE EMDC architecture. 

The EMDC architecture including both heterogenous computing and programmable 
networking resources used for monitoring traffic, 5G offloading, and decentralized cyber-
security is illustrated in Figure 2.3. 
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Figure 2.4: Scenario of 5G network served by backhaul and metro-core network with cloud 
and edge resources. 

The considered network scenario highlighting the potential of the UE-based INT solution 
is shown in Figure 2.4. The UE is connected to the cloud through a network 
encompassing the 5G network, the 5G backhaul and the metro-core network segments. 
Edge nodes (i.e., E1 and E2) are located at the backhaul segment, which is composed 
of programmable forwarding elements (i.e., sw1-sw6 switches) supporting INT. INT is 
used to collect the time spent in queue by each traversed switch. Service applications 
can run either in the cloud or in the edge computing node, based on the latency 
requirements. Typically, INT is programmed to monitor just the wired segment. However, 
in a wired-wireless e2e path, significant link latency variations may occur, particularly in 
the Radio Access Network (RAN) system segment, traditionally not monitored by INT. 
Indeed, latency variations due to mobility, users' subscription, queuing delay, frame 
alignment and transmission processing may heavily affect service performance. 

To enable e2e INT-based monitoring and dynamic cloud edge steering without involving 
the controller, three main technologies need to be developed: a) UE inclusion in the 

INT domain, b) extended handling of the INT Report packet to compute link latency and 
c) automatic source-based edge-cloud steering. First, a programmable switch is 
implemented within the UE as a software service app (e.g., a lightweight virtual 
container) and programmed to act as INT source node. Transit nodes, including the 
Edge switch, update the INT values. The destination node, e.g., the cloud gateway, 
removes all INT headers providing traffic transparently to the server. In addition, the 
destination, instead of sending the INT Report message to the Controller, it forwards the 
Report packet in the backward direction up to the UE. Also, the edge node is configured 
to pop INT headers and send Report messages in case the traffic is steered at the Edge 
without reaching the cloud. The Report packet is also used to collect latency information 
in the backward direction from the cloud to the UE. This way, it is possible to correlate 
timestamp information at each traversed node as well as monitor the whole bidirectional 
e2e latency performance, also including the wireless link. The experienced latency of the 
latest N packets is stored at the UE in a P4 register. 
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Figure 2.5: In-band telemetry at the user equipment for latency monitoring and automatic 
decentralized steering. 

Finally, INT is also augmented to include extra fields. A specifically added flag called 
EnableEdge EE is set by the UE if the experienced latency is not satisfactory (Figure 
2.5). If the switch at the edge detects the EE flag set, it triggers the steering at the edge. 
This way, the UE performs source-based steering imposing traffic to reach the closer 
edge in case latency threshold is exceeded, without involving controllers. To avoid 
instabilities, EE is activated when a pre-determined number of packets exceeds the 
threshold, utilizing the aforementioned stateful capability of the P4 technology. 

2.3.2. Peer collaboration of SDN controllers 

This section explores one possible solution to coordinate multiple SDN controllers to 
operate on a packet/optical network including P4-based packet devices, hybrid 
packet/optical devices, and traditional optical devices.  

Disaggregated optical networks have attracted remarkable interest due to potential 
savings in CapEx as well as for their fully standardized open interfaces for SDN [Ricc, 
Chon, Hern]. In this context, most of the scientific work on disaggregation has focused 
on optical transmission modules as standalone network elements, like transponders and 
muxponders. However, the recent advances in transmission technology have driven the 
introduction of coherent pluggable transceivers that can be equipped within packet 
switching devices. For example, Digital Coherent Optics (DCO) transceivers are 
commercially available at rates of 400 Gbps with configurable transmission parameters 
in different form factors, such as CFP2 and the smaller QSFP-DD 400ZR. Replacement 
of standalone transponders with pluggables modules in the packet devices directly 
connected to the optical network drives relevant benefits in terms of CapEx, power 
consumption and occupied space in central offices. Furthermore, it enables a tight 
integration between packet and optical networks, which is of special interest as transport 
is dominated by Ethernet and IP traffic. For example, a single packet switch can provide 
both intra-data center (DC) traffic aggregation and, thanks to coherent pluggables, 
effective DC-to-DC interconnection. However, controlling packet-optical solutions 
requires a complete operating system that is much more complex than traditional 
NETCONF/YANG software agents employed in standalone transponders [Sgam-1, 
Gior].  

SONiC (Software for Open Networking in the Cloud) is an open-source network 
operating system already deployed in production intra-DC networks and it is also 
considered a strong candidate to control packet-optical nodes although some 
operational extensions are needed to fill the existing architectural gaps. For example, 
SONiC does not natively support NETCONF and it does not encompass the needed 
software components to operate on coherent pluggable transceivers. Another gap to be 
filled is the coordination between packet and optical parameters on the same node, 
which are often provided by two different SDN controllers, one in charge of packet 
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resources and one in charge of optical transport. So far, this aspect is yet undiscussed in 
the scientific literature.  

This section designs and implements a novel comprehensive workflow enabling 
coordinated control by SDN packet and optical controllers concurrently operating on a 
packet-optical node equipped with coherent pluggable modules and using SONiC 
enhanced with NETCONF/YANG components. 

 

Figure 2.6: Disaggregated metro network scenario. 

The reference disaggregated network scenario is illustrated in Figure 2.6. Two types of 
nodes are present: optical switches (ROADMs) providing optical switching and packet-
optical nodes providing packet switching. Packet-optical nodes are equipped with 
pluggable transceivers. In large metro networks, a single controller with visibility on both 
packet and optical resources is hardly implementable due to scalability issues. Two 
controllers are then typically considered: an Optical SDN Controller (OptC) in charge of 
the disaggregated optical transport network and a Packet Controller (PckC) supporting 
Layer 2-7 configurations. Traditionally, each SDN controller has full visibility on all 
components and software modules of every controlled network element. However, in the 
considered scenario, two different controllers need to concurrently operate on packet-
optical nodes. Thus, a proper workflow needs to be defined to enable the SDN agent of 
the packet-optical node to coordinate the operations imposed by each controller. Indeed, 
without proper coordination, complex multi-layer operations, such as recovery upon soft 
failure, would lead to management conflicts on the packet-optical nodes as well as to 
potential traffic disruptions. 

 

Figure 2.7: Proposed coordinated workflow for pluggable control. 
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The proposed workflow used to coordinate PckC and OptC operations is reported in 
Figure 2.7 (steps A-F). The workflow exploits the NETCONF-based SDN agent deployed 
in the packet-optical node. Both controllers are connected to the agent. To avoid non-
standard and complex peer/hierarchical operations, the two controllers do not 
communicate each other to coordinate their actions. Instead, they leverage on the 
proposed workflow to avoid conflicts and guarantee segregation of control. Ownership 
segregation has been implemented exploiting the NCACM solution as detailed in RFC 
8341. In particular, the OptC is provided with writing rights on the optical parameters and 
read-only rights (including enabling notifications upon subscriptions) on packet 
parameters. Similarly, PckC is provided with writing rights on packet parameters and 
read-only rights on optical parameters.  

In the considered use case, two connections are configured on the network. Upon soft 
failure detection affecting the connection provisioned through the optical pluggable 
module (e.g., port 2 in Figure 2.6), a NETCONF notification is sent to both controllers 
(step A). This triggers PckC to initiate the recovery workflow, while OptC becomes aware 
of the soft fault but, to avoid concurrent operations potentially leading to traffic disruption, 
it does not enforce optical reconfigurations yet. In step B, PckC enforces new forwarding 
rules to an alternative pluggable module (from port 2 to port 3 in the figure) exploiting the 
protection connection (red in Figure 2.7). Then, step C triggers a further NETCONF 
notification to OptC, indicating that no tributary traffic is forwarded by the pluggable 2. 
This triggers step D: OptC can now enforce the optical transmission adaptation of the 
pluggable modules and the potential reconfigurations of the transit ROADMs. Once the 
adaptation procedure is concluded, the connection using pluggable 2 returns available, 
and a NETCONF notification is sent, notifying the end of the optical recovery (step E). 
This allows PckC to revert to the original state, successfully reconfiguring tributary traffic 
through the optical transceiver of port 2 (step F). 

The proposed solution has been implemented in a network testbed reproducing the 
scenario of Figure 2.6. The packet-optical node architecture is depicted in Figure 2.8, it 
consists of a Mellanox SN2010 Ethernet switch running SONiC operating system over 
ONIE.  

 

Figure 2.8: Packet-optical node based on Mellanox SN2010 and Sonic. 

On top of SONiC, a specifically designed docker container runs the ConfD-based 
NETCONF agent communicating with the controllers. The container retrieves node 
status information by directly accessing the SONiC Redis database and enforces node 
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configurations using custom-built REST APIs integrated within SONiC. Node ports 1 and 
3 are equipped with 10Gb/s SFP+ pluggable transceivers, monitored by SONiC pmon 
container; VLAN settings are applied through the SONiC swss and syncd containers. 
Port 2 is attached to an external 100 Gb/s coherent system configured as being a 
pluggable module, i.e., its driver is accessed via REST by the docker only, with no direct 
connection to the SDN controller as it would be for a standalone transponder. As also 
illustrated in Figure 2.6, Port 1 acts as tributary interfaces, port 2 handles the working 
100Gb/s coherent communication across the optical transport network. Port 3 provides 
the alternative path for protection purposes. Under working condition, tributary traffic of 
port 1 is forwarded to port 2 only. Then, soft failure is generated by using a Variable 
Optical Attenuator (VOA). 

 

Figure 2.9: NETCONF messages captured between the agent and the controllers; xml 
scheme implementing RFC 8341. 

Figure 2.9 shows the Wireshark capture summary of the NETCONF messages 
exchanged by the SONiC container and the two controllers. First, edit-config messages 
are exchanged to establish the two connections, second the two controllers subscribe to 
the notification stream of the agent, third the soft failure occurs and it is notified to the 
controllers that employ the proposed workflow. Other messages are periodically 
generated by the controllers for synchronization purpose. Workflow events are zoomed 
in the figure inset. In particular, failure notification is generated at time 0 (step A). Then 
PckC elaborates the rerouting options, e.g., exploiting the alternative path through port 
3. After 996 ms (step B1), the container applies the received VLAN configuration thus 
rerouting the traffic on the backup connection (traffic rerouting is performed without loss 
of packets). The previous VLAN configuration is deleted at Step B2 (time: 1881 ms), 
triggering a new notification message (Step C time: 1984 ms) that informs the OptC that 
no traffic is anymore forwarded through port 2. Thus, OptC generates an edit-config 
message configuring a new operational mode (e.g., Forward Error Correction - FEC - 
adaptation) on port 2; this message is received at the agent at time 2072 ms (Step D). 
This configuration is applied at time 2372 ms (Step E), however the corresponding data 
plane operation requires around 38 seconds. During this time, port 2 becomes 
unavailable. Therefore, without the proposed coordination and traffic rerouting significant 
traffic loss would have been experienced, while, thanks to the coordinated workflow, no 
traffic disruption is experienced. The overall measured time between step A and E is 
always less than 2.5 seconds (out of ten experiments), with around 2 seconds required 
by the data plane configuration implemented in SONiC, while around 0.5 seconds are 
due to the control plane operations.   
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Thus, fast event coordination is achieved without experiencing traffic disruption, 
completing the workflow in less than 2.5 seconds mainly due to hardware configuration. 

2.4. Hierarchical collaboration of SDN controllers 

With respect to the previous section, this section explores the possibility to utilize a 
hierarchy of SDN controllers to operate on a packet/optical network including P4-based 
packet devices, hybrid packet/optical devices, and traditional optical devices.  

 

Figure 2.10: hierarchical controllers architecture. 

The control of integrated packet-optical nodes requires the evolution of the currently 
available operating systems for packet nodes (e.g., Software for Open Networking in the 
Cloud - SONiC) to also support configuration, state information retrieving, and 
management of coherent pluggable modules. Indeed, following the traditional control 
plane architectures, packet-related configurations should be enforced by a an SDN 
Controller dedicated to the packet domain (i.e., PckC) while optical parameters need to 
be configured by another SDN controller dedicated to the optical domain (i.e., OptC). So 
far, the problem of coordinated control of packet-optical nodes by two SDN controllers 
has been addressed in [Ricc, Lope, Sgam-2], as detailed in previous section, relying on 
the Network Configuration Access Control Model (NCACM) solution detailed in RFC 
8341. However, such solution may introduce significant maintenance problems 
especially in case of firmware and software updates at the node and at the controller 
level.  

Specifically, this section shows an alternative approach based on inter-Controller 
communication. With this solution, packet-optical nodes only interact with the PckC. In 
turn, the PckC is enabled to configure optical parameters by proper interaction with the 
OptC, mediated by a hierarchical parent controller, as illustrated in Figure 2.10.  

Figure 2.11 shows the proposed workflow to guarantee coordinated control of packet 
nodes, hybrid packet-optical nodes using pluggables, and optical nodes. The figure 
illustrates both the network initialization procedure (steps A-C), and the procedure used 
to activate a multi-layer connectivity service (steps 1-8). 
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Figure 2.11 Control plane architecture and workflows. Letters A-B describe the network 
initialization workflow; numbers 1-9 describe the connectivity establishment workflow. 

During network initialization the packet and the optical topologies are pushed into the 
respective controllers (step A); the hierarchical SDN controller (HrC) loads the topology 
of the two domains (including the pluggables modules discovered by the PckC) through 
the controllers REST APIs (step B); finally, the associations between the pluggables 
modules used in the packet-optical nodes and the ROADM add/drop interfaces are 
pushed into HrC (step C). All this data is classified as quasi-static information since 
determined by manual intervention and can be therefore initialized through specific 
configuration (i.e., POST commands on the REST APIs).  

After network initialization, when a layer 2/3 connectivity request arrives at HrC (step 1), 
it first identifies the pair of pluggable modules to be interconnected through the optical 
transport network. At step 2, HrC sends a connectivity request (e.g., Open Transport 
API, T-API) between SRG connection points to the OptC. To effectively perform 
impairment-aware optical path computation, the OptC must be aware of pluggable 
supported features (e.g., supported modulation formats, FECs, operational modes). At 
step 3 the OptC performs impairment-aware path computation, identifying the suitable 
configuration for pluggable modules as well as traversed optical path. This step, 
typically, is not executed inside the SDN controller, but exploits external tools specifically 
developed with this target, e.g., GNPy [Mans, Ferr]. At step 4 the controller enforces the 
SRG-to-SRG configuration through NETCONF, driving the set-up of all traversed 
ROADMs. At step 5, once the path is successfully established, the OptC replies to the 
HrC informing about the available SRG-to-SRG connectivity as well as on the selected 
configuration of pluggable modules. Indeed, they cannot be directly configured since 
under the domain of control of the PckC. At step 6, the HrC generates a packet level 
REST connectivity request to the PckC. The request includes the configuration 
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previously identified by the OptC for the pluggable modules at the line side. At step 7, 
the PckC enforces the configuration to both involved packet-optical nodes, and other 
involved packet nodes. At step 8 the PckC informs the HrC about the successful 
configuration. 

 

Figure 2.12 Hybrid-node architecture including P4-based and NETCONF agents, both 
connected to the Packet controller. Dashed interactions are implemented but not included 

in the demonstration. 

The packet-optical node architecture is better detailed in Figure 2.12. It is an evolution of 
the architecture depicted in Figure 2.8, where (besides the NETCONF docker container 
to control the optical pluggables) SONiC also includes the a P4/P4Runtime docker 
container. Using these two containers, two parallel communication channels are 
established between the packet-optical device and the PckC to enable configuration of 
packet and optical resources, respectively. 

 

Figure 2.13: network testbed scheme 

The illustrated setup has been demonstrated in a live experimental session in ECOC 
2021 international conference. Specifically, Figure 2.13 illustrates the physical testbed 
that we have used including: two physical Mellanox switches adopting the internal 
architecture illustrates in Figure 2.12; two emulated P4-based switches adopting 
physical interfaces, two physical optical transponders, and four emulated optical 
switches (not represented in the figure). 
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Figure 2.14: screenshots of ONOS controllers. 

The live demonstration at ECOC demonstrated that the parent controller is able to 
correctly acquire the topologies of the child domains, moreover it is able to forward the 
required information from the OptC to the PckC required for the configuration of the 
optical pluggables installed in the hybrid packet/optical node. The whole communication 
required less than one seconds and is therefore suitable not only for the provisioning 
phase, but also for the management of failure recovery operations. 

 

2.5.  Investigating physical layer security (PLS) blockchain efficiency 

2.5.1. Background 

In WP2, we developed the concept of blockchain supported by two Guy Fawkes 
protocols, PLS and SLVP. The blockchain is a permissioned structure, which supports 
edge resource collaboration between participating IoT devices, and also between the 
Edge datacentres and the IoT swarm.  These security mechanisms were analysed and 
developed under WP2 and it was demonstrated that they have the required security 
properties. 

However, as we focus on low bitrate communications for IoT, we require the ability to 
address individual transactions in blockchain blocks without exchanging too much 
security data. LoRa communications for IoT are limited by EU regulations to a low duty 
cycle (1%; down to 0.1% in certain frequency bands). This severely limits the use of 
classical indexing structures, such as Merkle Trees or Merkle-Patricia Tries, especially 
when transactions on behalf of individual blockchain users are infrequent (which is the 
case with smart sensors, our target IoT category). Those indexing structures require a 
Merkle proof and its attendant data communications even when the target part of the 
block is missing (which would be in 90% of the time or even more) in the case of the 
PLS blockchain. 

2.5.2. Context 

Our lightweight blockchain protocol, SLVP requires the counterparties (IoT platforms) to 
satisfy themselves that their protocol messages are present or absent in every given 
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block, which would be costly if retrieval of such messages required active 
communication.  The cost would be in terms of both energy/power and communication 
bandwidth. This motivated us to develop a novel solution for indexing individual 
contributions to a blockchain block. 

 

Figure 2.15: Indexing a block 

We proposed and evaluated an indexing scheme based on a compressed version of the 
Merkle tree, which we called the Merkle-Tunstall Tree (MTT).  An MTT consists of a 
dense binary tree possibly truncated on the right, whose leaves represent contributions 
from individual users to a given block. The space of user IDs is randomly permuted by 
our original shuffle-shifter to eliminate correlations between the presences of different 
IDs in a series of blocks. We call the result of permutation local IDs, meaning that they 
are local to the block. We associate with the block a bitmap where the absent local IDs 
are marked with 0s and the present ones with 1s. Due to the low duty cycle of IoT 
devices, most digits in the bitmap will be 0s for any given block. This points at low 
information content of the bitmap and the potential for efficient compression.  

The Fog Server of the blockchain is the agent that forms blocks. It knows how many 
users contributed to a given block and, under the assumption that their presence is not 
correlated, it can apply a very effective compression technique. We use the so-called 
Tunstall compressor, which is based on this single parameter, namely the density of 1s.  
The block bitmap thus compressed is included in the block’s Root of Trust together with 
the root hash of the dense, truncated Merkle Tree and some parameters; and the RoT is 
broadcast using the PLS protocol and architecture developed for BRAINE’s WP2. 

2.5.3. Investigation of efficiency 

1. An IoT device checking a certain user’s contribution (including of itself) to the 
current block will not need to communicate until it ascertains the presence of that 
contribution. It is done by examining the RoT, which the device receives for every 
block of the chain anyway. If the contribution is there, as in Figure 2.15, adjunct 
hashes of the tree need to be communicated along with the leaf to support the 
Merkle proof. The number of these hashes (the average length of the adjunct 
path) defines the communication volume.  We investigated the adjunct path 
length by building a statistical theory of it and we found that  5 or 6 adjunct 
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hashes (making the packet size between 160 and 192 bytes plus the leaf size) 
are required, well within the LoRa packet size constraint (250 bytes).   

2. We evaluated the effectiveness of our de-correlator, which is a combination of 
the modulo shift (adding a random number to an n-bit operand) and the perfect 
shuffle (rotation of n bits), which is shown as shuffle-shifter in Figure 2.15. We 
established that for the relevant n=1024, which is the expected maximum 
number of LoRa devices connected to a single hub, the number of rounds to 
achieve ~1% correlation between bits of the image under the standard avalanche 
test is 200.  We observed that the implementation of a shuffle-shifter on a 
microcontroller has negligible cost (a few thousand instruction cycles).  

3. The quality of the Tunstall compressor was evaluated for the relevant range of 
parameters. Table 2.9 quantifies residual redundancy of the compressor for the 
codeword size 4 and 8.  We observe that even at w=4 (which only requires a tiny 
coding table) under 10% occupancy the redundancy of compression is below 
8%. When the occupancy drops to only 5% the compressor does not perform as 
well, but then the entropy of the bitmap drops to 0.3 bit/digit and requires  at least 
300 bits (~37 bytes) to be represented. Whether it is 37 bytes or 37+30% ~ 50 
bytes makes almost no difference for the size of the RoT.  Any further reduction 
in occupancy can be accommodated by just listing the original user IDs, of which 
there would be less than 50.  

Table 2.9: Quantifying residual redundancy of the compressor for the codeword 
size 4 and 8 
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3. Resource Management & Service Deployment 

3.1. Resource Management & Service Description 

3.1.1. Data model 

The vocabulary for service deployment and resource management is based on 
Kubernetes schema as well as OWL-S through service profiles for resource and service 
description respectively. There is as well an additional metadata to enable the 
description of Docker Images, deployments and Services. Figure 3.1 gives an overview 
of the vocabulary developed for resource management and service deployment. Except 
for Docker Image and Service Profile which are Deployable subclasses, most of the 
model is a direct translation from Kubernetes Node schema. The vocabulary allows 
access to the current node status such as Allocable and the Capacity of the 
ComputationalResources, the internal and external network addresses as well as Node 
Information such as architecture. With this information, it is possible, for instance, to 
measure the capacity of the Nodes and devise more intelligent service allocations. The 
full vocabulary is available under Creative Common CC-BY-4.0 license at 
https://github.com/eccenca/braine-vocab. 
 

 

Figure 3.1: Excerpt of BRAINE vocabulary for Resource Management and Service 
Description. 

https://github.com/eccenca/braine-vocab
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There are discussions on going to decide how to parametrize Training and Test set 
collections for the AI models as well as frameworks and architectures. One way to go is 
to use the already existing OWL-S Service profile parameters, but the main question is 
how to parametrize the collection in a way that the running Cluster and POD has access 
while being restricted enough to not allow any other undesired or unplanned access. 
One way to go is to add an authentication mechanism as parameters such as 
user/password or public key. Another is to have a shared data space with restricted 
network access to BRAINE clusters, therefore the user could specify where to locate the 
AI collection in the shared private data space. Following this idea, one could also upload 
the collection metadata such as location and size to eccenca Corporate Memory, 
allowing users to easily check, query and select the desired one. 
 
Registry Interfaces: In addition to the vocabulary, we have also developed the interface 
to allow partners to register their applications and services, creating the service catalog 

for deployment. Figure 3.4 displays the Docker Image register window in CMEM, it 

allows users to register Docker images for deployments. Figure 3.5 displays the Service 

Profile Register Window that allows the registering of Services through Kubernetes 
Deployment description files. In both windows there is an attribute manifest which is 

used to either register Kubernetes Deployment descriptor (Figure 3.2) in case of Service 

Profile and Docker Image Descriptor (Figure 3.3) in case of Docker Images.  
 
kind: Pod 
    metadata: 
      labels: 
        run: helloworld 
      name: helloworld 
    spec: 
      runtimeClassName: rune 
      containers: 
      - command: 
        - /bin/hello_world 
        env: 
        - name: RUNE_CARRIER 
          value: occlum 
        image: helloworld 
        imagePullPolicy: IfNotPresent 
        name: helloworld 
        workingDir: /run/rune 
    EOF 

Figure 3.2: Kubernetes manifest example. 

 
FROM alpine  

CMD ["echo", "Hello BRAINE!"] 
Figure 3.3: Image manifest example. 

  

 
The Docker Images have an additional attribute called state. The state is used to 
indicate whenever an Image is New and therefore needs to be reviewed, if it is Under 
Review, or if it is Ready for deployment. 
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Figure 3.4: Docker Image Registry Window. 

 

 
Figure 3.5 Service Profile Registry Window. 

Onboarding: The service registration is kickstarted by an onboarding process where all 
users are asked first to create a docker image of their service that will be later placed in 

a Kubernetes Node. The image is registered through the process depicted on Figure 3.6 

as follows. The user registers the Docker Images through the dialog on Figure 3.4. The 

inserted image is marked as new, and stored in Corporate Memory Platform. The cluster 
admin verifies if the image was properly created, taking into account privacy as well as 
access issues and marks it as an Under Review. When the cluster admin certifies that 
everything is correct, the image then receives the state Ready, meaning the Image is 
ready to be used. 
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Figure 3.6: Service Onboarding Flow. 

3.1.2. Resource & Service Orchestration 

The Service & Resource Catalog instantiation relies on different components, each of 
the necessary for an operational system functioning. The Metrics Relay is an application 
that extracts information from Kubernetes APIs such as ComputationalResource 
allocation and capacity from the Nodes (see T3.3, resources available as well as their 
condition. The Relay also makes use of the Kubernetes Metrics server that provides 
periodic updates on Memory and CPU consumption. The relay makes use of the 
eccenca Corporate Memory Data Integration module to perform transformations on the 
Kubernetes data extracted from the APIs and populate the BRANE Knowledge Base. 
The relay is open accessible at https://github.com/eccenca/braine/tree/main/relay (see 
Figure 3.7).  

https://github.com/eccenca/braine/tree/main/relay
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Figure 3.7: Service & Resource Repository components. 

Decoupled Information Transferring: To facilitate the transferring of information 
between the Kubernetes Cluster (Node) and the CMEM platform a bootstrap system was 
developed. The bootstrap system reads information from the Kubernetes Cluster or from 
DKB broker in a specific address and pushes it to the eccenca Corporate Memory using 
a transformation from the CMEM Data Integration module (available at 
https://github.com/eccenca/braine/tree/main/setup). CMEM is a semantic data 
management software that accelerates analytics and reporting projects by transforming 
the way enterprises understand, align, prepare, and access their data. In the BRAINE 
project, CMEM is used to store and manage the BRAINE knowledge graph that contains 
information about Kubernetes Clusters, Nodes and Pods as well as services and 
workflows transformations through mapping rules. The BRAINE project uses the Data 
Integration module (Figure 3.8) to ingest Kubernetes information such as Nodes and 
their resources (memory and CPU) to populate the BRAINE Knowledge graph. The 
Corporate Memory instance used in BRAINE project is accessible at 
http://braine.eccenca.dev. 

https://github.com/eccenca/braine/tree/main/setup
http://braine.eccenca.dev/
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Figure 3.8: Corporate Memory Data Integration module. 

CMEM contains as well a customized version of Redash (https://redash.io/) that allow 
users to create personalized dashboards using SPARQL queries. In the context of 
BRAINE project, the Corporate Memory Redash (Figure 3.9) is used for monitoring 
Kubernetes Nodes CPU and memory consumption. 

To orchestrate changes among the physical and the semantic abstract objects in the 
repository. The image & service orchestrators were developed. The image orchestrator 
is designed to register, update or remove images at the Global Image Register (GIR). 
When an image needs to be registered, the Image Orchestrator reads the image 
information from the BRAINE image registry and register it in the GIR, updating its status 
to ACTIVE (see https://github.com/eccenca/braine/tree/main/container-orchestrator). 
The registered images will then be available to build Service Descriptors and ultimately 
perform service deployments. 

The Service Orchestrator is responsible for service deployments, collecting service 
metadata and maintaining the information of the Deployments at the BRAINE Resource 
& Service Repository synchronized with the information of the running service. It 
supports Service Deployment and Partial Status synchronization features. When a user 
defines a Deployment at the Authoring tool a new Deployment is instantiated at the BKB, 
the Service Orchestrator recognizes the new service through the state and reads its 
Service Deployment Specification containing information such as the Docker 
deployment, the user constraints, and the target Kubernetes Cluster (Node). Notice that 
a deployment may or not contain a Kubernetes Node or constraints as those attributes 
are not mandatory. In case a Node is not specified but there are constraints, it then 
verifies which Node is suitable for running the service, checking the resources of the 
Nodes available at the BKB. If no suitable Node is found, the Deployment will be in 
waiting state until a Node containing the constraints is found. In case the Service 
Deployment Specification has no constraints, the Service Orchestrator will use the first 
Node available. Otherwise, it will use the Node specified. When a Deployment is 
successful, the Service Orchestrator changes the Deployment state for running or stops 
with error otherwise. 

 
 

https://github.com/eccenca/braine/tree/main/container-orchestrator
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Figure 3.9: Corporate Memory Redash module showing Node’s CPU and Memory 

consumption. 

3.1.3. Semantic Web 

The service offering is to address distributed and heterogeneous systems, to provide 
unified and centralized resource APIs to the workload distribution and service 
management.  

Semantic Web is needed to deploy this service and understand the complexity.  

The qualified data has to be understood before using it.  

During this process, it has to be clarified where the data is coming from and where the 
information should be used afterward.  

The right data has to be used and executed at the right time. 

 

3.2. MEC platform applications deployment 

In D3.1 we have investigated the MEC platform architecture, based on Intel OpenNESS 
framework. Such opensource platform has been customized for Braine application to 
meet the objectives defined for Edge computing. In this Deliverable, we will focus on the 
applications deployment which is an essential step that has to be done to onboard the 
services into the MEC platform.  
Each tenant application has to be virtualized (Docker containers or VMs) and uploaded 
in the Braine registry that resides in the MEC Controller. Once the application has been 
uploaded, from the MEC controller it is possible to deploy a service by using a GUI 
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interface. The deployment phase is in charge of downloading the tenant MEC app image 
to the Edge node and, then, starting the service. In the following, this procedure is 
summarized. 

3.2.1. Creating application  

Before uploading the application image to the Braine registry, the service to be deployed 
has to be defined in the MEC controller platform. Adding the application to the MEC 
controller is straightforward thanks to the GUI. Figure 3.10 shows how to add the service 
from the GUI. Special attention should be paid to the fields required to describe the 
service, also in terms of computation capabilities. Here is the list of the fields filled with 
an example for a better comprehension: 

• Name: TestApp 

• Type: Container 

• Version: 1.0 

• Vendor: Sma-RTy 

• Description: application test to be onboarded 

• Cores: 2 

• Memory: 1024 

• Source: https://braineregistry/smarty_app/smartyapp.tar.gz 

 

Figure 3.10: Creating application in the MEC Controller 

3.2.2. Deploying application 

Once the service has been registered, we are ready to deploy the application. From the 
main window of the Controller GUI, you can see the list of the Edge nodes available. For 
each Edge node you can define the MEC apps (available from the list of applications 
described in Section 3.2.1), the network policies (if any) and you can check the status of 
the network interfaces. By clicking on “deploy app”, you can select the service you would 
deploy and then the system starts to download the image to the edge node from the 
Braine registry. Figure 3.11 depicts this step.  

 

https://braineregistry/tentant_app/tenantapp.tar.gz
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Figure 3.11: Deploying an application to the Edge node 

3.2.3. Start/Stop service  

After downloading the service image to the Edge node, we are allowed to start, stop, 
restart and delete the application. By clicking start, the service starts in the Edge node 
and you can directly control the application log from both Edge controller and Edge 
node. Indeed, all the system logs are sent to the controller which is also in charge of 
monitoring the application status. Figure 3.12 summarizes this last step.  

 

Figure 3.12: Start the service in the Edge node 

3.3. SLA broker in distributed edge environment 

The BRAINE SLA Broker's role is to notify the orchestration framework about any 
violation of the SLA agreement. The BRAINE framework implemented two-level SLA 
management levels: local and global, to reach an efficient SLA violation triggering 
system in a distributed edge environment. The local level consists of a data collector, 
analyzer, and local policy manager. The data collector gathers and aggregates the 
measurement points received from the telemetry system. The measurement points are 
aggregated based on predefined factors related to the subject application (e.g., every 
second or 10s). The analyzer is responsible for informing the local policy manager in 
case of SLA violations. The local SLA manager performs an action based on the SLA 
agreement. For instance, as in Figure 3.13, the SLA Broker could inform the local 
orchestrator regarding the SLA violation, so the local orchestrator could have 
rescheduled the instance in another host belonging to that specific edge node. In case of 
not resolving the SLA violation for a specific time/iteration, the local policy manager 
escalates the issue to the global policy manager, which requits the global service 
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orchestrator to resolve the issue (i.e., by rescheduling the instance on another edge 
node).   

 

Figure 3.13: Distributed SLA Broker Architecture. 
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4. AI/ML-based workload placement 

4.1. AI/ML-based scheduler 

The BRAINE scheduler (available at: https://gitlab.com/braine/wp3-work_placement-luh/) 
customizes the default behaviour of the Kubernetes scheduler by using deep 
reinforcement learning (DRL) in the node scoring step. More specifically, it uses several 
interactions with the EMDC environment to learn an optimal node scoring strategy. This 
will result in node selections that optimize a long-term objective, such as maximizing the 
resource efficiency in the cluster and as a result its energy efficiency. To do so, it uses 
the following information in the RL state:  

• Pod features: The CPU, memory and disk requests of the pod.   

• Node features: The current resource utilization levels of the nodes across the 3 

resource dimensions (CPU, memory, disk).   

This information is then fed into a neural network that is trained to return the node 

scores.  The reward/objective to be optimized can be specified in the configuration file 

prior to the training process. The optimization options that are currently available are:  

• OP1: Minimize the number of active nodes, while minimizing the performance 

degradation that arises from placing multiple pods on a node experiencing 

resource contention.  

• OP2: Minimize the long-term average wait time of workloads.   

The training process is based on the Double Deep Q-Network (DDQN) algorithm with a 

Prioritized Experience Replay (PER) buffer. PER prioritizes the most useful experience 

tuples in the training process, instead of selecting them completely at random. Other 

algorithms allowing to deal with a varying number of worker nodes are currently being 

investigated.   

As mentioned before, the BRAINE scheduler customizes the scoring step. Scoring is the 

step where all of the feasible nodes (obtained from previous steps of the scheduler) are 

ranked so that the node with the highest score will be selected to host the pod. A high-

level illustration of the different components involved in the proposed RL-based scoring 

plugin is presented in Figure 4.1. 

https://gitlab.com/braine/wp3-work_placement-luh/


 

39 

 

 

Figure 4.1: Component diagram of BRAINE RL scheduler 

1. Scheduler Trainer: is the training component that is deployed as a pod and is in-
charge of training the neural network for various cluster sizes, training data, and 
optimization objectives. Currently, the neural network is trained based on 
interactions with a simulated EMDC environment. However, later on, training will 
be performed based on real cluster data collected by the ExperienceCollector in 
order to continuously adapt to the real workload patterns. Trained models 
including network structure and weights are persisted (in a volume called 
DRLModelWeights) and delivered to SchedulerInference  for the serving phase. 

2. Scheduler Inference: is a containerized Kubernetes service hosting the ML-
based inference engine. The inference engine serves the prediction/scoring 
requests based on the trained models produced and deployed by 
SchedulerTrainer. The inference engine functions are exposed via a RESTful 
API. 

3. BRAINE K8s Scheduler: is the Kubernetes scheduler that its scoring plugin has 
been replaced by the LUH developed custom scoring module. This component 
also runs as a standalone pod. Its scoring plugin implements the interfaces of the 
PreScore and Score extension points. In particular, the PreScore function 
interacts with SchedulerInference to retrieve the node scores based on the 
current cluster and workload states. The state is formed by pod features and 
nodes’ features. The required pod features are its resource requests which can 
be retrieved from the p parameter of the PreScore function. As for the nodes’ 
features, they correspond to their current resource utilization levels, which are 



 

40 

 

retrieved from the Data Access Agent pod. The data access agent pod is indeed 
a component of the cognitive framework (see next sub-section) and can be used 
by multiple ML-based components, systems, and partners. The obtained node 
scores, from the inference engine, are written into the PreScore state variable. 
Since the Score function also has access to this information, it retrieves the 
scores and uses them for the evaluation of the highest-rank node. 

4. Data Access Agent: is a standalone containerized Kubernetes service that as a 
component of the cognitive framework exposes a REST API and acts as an 
intermediary between the scheduler and the telemetry data provider or any other 
data source of interest for the AI/ML modules. At the moment cluster state is 
chosen to be stored and acquired from the telemetry database, hence the Data 
Access Agent retrieves nodes’ features from there. However, other components/ 
partners can replace the data access logic of this component to acquire data 
from other sources 
 

Table 4.1 outlines the different interfaces provided/required by the aforementioned 
components. 

Table 4.1: Specification of the Interfaces of the components of the BRAINE scheduler 

Interface name Provided by  Required by Input data Returned data 

Step SimulatedEnviro
nment 

TrainingScript Selected action 
(machine) 

Updated state, 
reward, a flag 
indicating the 
end of the 
episode 

GetSchedulingEv
ents 

APIServer ExperienceColle
ctor 

Period of 
interest for 
getting the 
scheduling 
events. 

Scheduling 
events of pods. 
More 
specifically, 
scheduling time, 
pod info, 
assigned node.  

GetMetrics DataAccessAgen
t 

ExperienceColle
ctor 

Period of 
interest  

Metric of 
interest (in this 
case, the node 
util 

zation level for 
each resource 
dimension) 

Node utilization 
metrics at the 
time where 
those scheduling 
events occurred.  

GetExperienceD
ata 

ExperienceColle
ctor 

TrainingScript - Experience 
tuples in the 
proper format.  

SaveWeights DRLModelWeigh
ts 

TrainingScript Path where the 
weights of the 
trained NN are 
saved. 

- 
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LoadWeights DRLModelWeigh
ts 

SchedulerInfere
nce 

Path where the 
weights of the 
trained NN are 
saved. 

- 

GetMetrics DataAccessAgen
t 

PreScore 
(K8sScheduler) 

Name of the 
metric of 
interest. In this 
case, real-time 
utilization rates 
of the nodes 
across all 
resource 
dimensions. 

Values 
corresponding 
to the requested 
metrics.  

GetMetrics TelemetryDB DataAccessAgen
t 

Name of the 
metric of 
interest. In this 
case, real-time 
utilization rates 
of the nodes 
across all 
resource 
dimensions. 

Values 
corresponding 
to the requested 
metrics.  

GetQValues SchedulerInfere
nce 

PreScore Pod features 
(requests in 
terms of CPU, 
memory, disk) 

Nodes’ features 
corresponding 
to their 
utilization rates 
across all 
resource 
dimensions.  

List of Q-values 
corresponding 
to the current 
RL state.  

 

4.2. Cognitive Framework 

During the project, many partners realized that different AI/ML software elements are 
under development. These elements share many characteristics, including their need for 
training and serving, their need to persist models and weights, and their need for cluster 
and application-level telemetry data. In order to better address this class of requirements 
a cognitive framework was proposed and is gradually getting integrated into the system. 
Figure 4.2 illustrates the initial architecture of such a framework. 
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Figure 4.2: The Architecture of the BRAINE cognitive framework 

Each partner registers its training and serving modules with the framework and provides 
access to the serving agents (the inference/prediction components) via endpoints 
(preferably RESTful). These endpoints will be consumed by plugins or other components 
e.g., the scheduler in Figure 4.2. On the other hand, any training module that needs 
accessing any data source is required to perform the action via the data access agent. 
The serving modules are recommended to not directly acquire data from external data 
sources neither directly nor via the data access agent(s). They should rely on the API 
calls to their endpoints and collect all the required data via parameters passed to their 
interfaces. Similarly, they should return their predictions as responses to the API calls. 
Continuing on the recommendation to implement RESTful APIs, the data exchange 
between the consumers and the APIs is recommended to be JSON. 

Each partner working on AI/ML-based workload placement will be responsible for 
implementing their data access agents to obtain data from the telemetry system, the 
message queues, distributed knowledge base, or any other data source. Later on, the 
developed data access agents can be merged to have a more generic system for obtaining 
data. That can be plugin-based or a descriptive YAML-based data acquisition system that 
different partners can utilize and configure towards their needs. 

 

4.3. Workload prediction and placement of vRAN 

We consider a system architecture in Figure 4.3 where the L2 layer (MAC, RLC) and L3 
layer (PDCP, RRC, and SDAP) layer is considered as virtualized network function (VNF) 
and is deployed at the edge micro data centre (EMDC).  The architecture which is shown 
in the Figure 4.3 aims for dynamic adaptation of underlying infrastructure of 5G radio 
units i.e., the RRHs.  At the first step, the metrics which will be used for the prediction 
algorithm are collected from the 5G open-RAN radio stack gNB network function and 
they are delivered using data bus of EMDC to the Resource Manager (RM) entity.  A 
predictive technique is defined as a statistical model that can be applied to known data 
of a given phenomenon to estimate future information.  The RM utilizes this data to feed 
arbitrary prediction techniques based on Markov decision process and/or sequence 
model in the form of MDP available at the prediction block, with proper inputs that allow 
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characterization of the virtualized gNB operation regarding its demand for computing 
resources of the EMDC.  

 

Figure 4.3: The architecture of workload forecasting and prediction. 

With the EMDC design of edge datacenter, connected via optical infrastructure that is 
dynamically managed by SDN, fine grained capabilities for VNF/CNF placement are 
available. The architecture that is proposed in the Figure 4.3 aims at dynamic adaptation 
of underlying infrastructure of 5G radio units i.e., the remote radio heads (RRHs). The 
objective here is to activate/deactivate in the temporal domain certain frequency 
subcarriers and/or particular RRH to be used by certain UEs based on forecasting the 
workloads of the gNB. The workload forecasting steps are described as follows: firstly, 
the metrics are collected from the 5G open-RAN radio stack gNB network function and 
they are delivered using data bus of EMDC to the Resource Manager (RM) entity. The 
RM utilizes this data to feed arbitrary prediction algorithm (mainly based on model-free 
approaches) available inside of the prediction block, with proper inputs that allow 
characterization of the virtualized gNB operation regarding its demand for computing 
resources of the EMDC. The prediction techniques to forecast the vRAN as a workload 
we consider the signal-to-noise ratio (SNR) metric from the gNB protocol stack by 
running several applications at the gNB and UE sides during collecting of the data to 
train the prediction model. The detailed procedure of the prediction technique is briefly 
discussed on the in the next section of the report.  

4.3.1. Predictive technique to forecast workload based on SNR 

The SNR measurement from the RAN side is used in our prediction techniques which is 
mainly on the random of the environment. Hence, the predictive technique must be able 
to forecast a random process whose output variable is of continuous value. The SNR 
can be measured at any time, which corresponds to a continuous-time random process. 
However, if the SNR measurement for a particular application with the 5G connectivity 
node is taken at equally spaced times, the predicted levels of the SNR can also be 
modelled as a discrete-time random process. We consider predictive techniques with the 
capability of forecasting several future time slots from a given moment. Therefore, we 
use the MDP and the sequential model as MDP for forecasting the random processes 
either in continuous-time domain or in discrete-time domain. In further step of the 
prediction techniques, we will utilize ML algorithm, e.g., reinforcement learning which is 
also the tuple of MDP that can improve the prediction accuracy of our problem. 
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4.4. AI image processing engine 

AI image processing engine refers to the AI component dedicated for UC2 application. 
This goal of this component is the possibility of tracking objects among multiple frames. 
The “objects” to be tracked for this activity are identified as the road users and this 
objective can be archived by considering an AI state-of-the-art framework (i.e., Darknet) 
combined with some algorithms dedicated for road users tracking. 
Before going into algorithm details, a review of the state-of-the-art methods for multiple 
object tracking is necessary. Object tracking is an application of deep learning where the 
program takes an initial set of object detections and develops a unique identification for 
each of the initial detections. Then, it tracks the detected objects as they move around 
frames in a video. In other words, object tracking is the task of automatically identifying 
objects in a images sequence and interpreting them as a set of trajectories with high 
accuracy. Often, there’s an indication around the object being tracked, for examp le, a 
surrounding square that follows the object, showing the user where the object is on the 
screen.  
To associate a unique ID for each object in the scene, three methods are mostly 
considered. The first one is the mean shift method. It is similar to K-Means but replaces 
the simple centroid technique of calculating the cluster centers with a weighted average 
that gives importance to points that are closer to the mean. The goal of the algorithm is 
to find all the modes in the given data distribution. Also, this algorithm does not require 
an optimum "K" value like K-Means. Suppose we have detection for an object in the 
frame and we extract certain features from the detection (color, texture, histogram, etc). 
By applying the mean-shift algorithm, we have a general idea of where the mode of the 
distribution of features lies in the current state. Now when we have the next frame, 
where this distribution has changed due to the movement of the object in the frame, the 
mean-shift algorithm looks for the new largest mode and hence tracks the object. 

 

Figure 4.4: Example of mean-shift object tracking implemented in OpenCV 

Another algorithm that is widely used is optical flow. This method differs from mean-shift, 
as we do not necessarily use features extracted from the detected object. Instead, the 
object is tracked using the spatio-temporal image brightness variations at a pixel level. 
Here we focus on obtaining a displacement vector for the object to be tracked across the 
frames. Tracking with optical flow rests on four important assumptions:  

• Brightness consistency: Brightness around a small region is assumed to remain 
nearly constant, although the location of the region might change. 

• Spatial coherence: Neighboring points in the scene typically belong to the same 
surface and hence typically have similar motions. 

• Temporal persistence: Motion of a patch has a gradual change. 

• Limited motion: Points do not move very far or randomly. 
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Once these criteria are satisfied, we use something called the Lucas-Kanade method to 
obtain an equation for the velocity of certain points to be tracked (usually these are 
easily detected features). Using the equation and some prediction techniques, a given 
object can be tracked throughout the video. 

 

Figure 4.5: Example of Optical flow operation 

The last approach which is commonly used is Kalman filtering. The core idea of a 
Kalman filter is to use the available detections and previous predictions to arrive at the 
best guess of the current state while keeping the possibility of errors in the process. For 
example, now we can train a good AI (for instance, Darknet) that detects a person. But it 
is not that accurate and occasionally misses detections, for instance 10% of frames. To 
effectively track and predict the next state of a person, let us assume a "Constant 
velocity model". Once we have defined the simple model according to laws of physics, 
we can make a nice guess on where the person will be in the next frame. However, we 
did not consider a noise component that is associated with the fact that we cannot 
always expect constant velocity and this noise is called "Process Noise".  
Moreover, the detector output is also not accurate in making predictions, thus we have 
"Measurement Noise" associated with it. 

  

Figure 4.6: Kalman filtering workflow 

As reported in Figure 4.6, the Kalman filter works recursively, where it takes current 
readings to predict the current state, then it uses the measurements to update the 
predictions. In other words, it creates a new distribution (the predictions) from the 
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previous state distribution and the measurement distribution. Kalman filter works best for 
linear systems with Gaussian processes involved. Road user tracking use case falls into 
the Gaussian realm, hence it is suited for the use of Kalman filters. For this reason, this 
last approach has been considered as AI image processing engine. 

4.4.1. Learning Module 

The learning module of the MOD application is used for learning state-of-the-art machine 
learning models. The learning module requires access to the influx DB, where found 
motifs by the Discovery module (WP4-T4.2) are stored. The detection models are 
learned from the discovered motifs, and a dictionary of models is created. The dictionary 
is then stored in the influx DB, and a copy is sent to the cloud. The Digital Twin utilizes 
the models' dictionary in the cloud to reconstruct the continuous data stream. The 
design of the data processing pipeline is depicted in Figure 4.7. 

 

 

Figure 4.7: Learning module data processing pipeline. 
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5. Monitoring infrastructure 

5.1. Network telemetry framework 

5.1.1. Overview 

 

Figure 5.1 Network telemetry framework 

Network telemetry framework purpose (see Figure 5.1) is to provide a real time 
information about current network status. This information is consumed later by multiple 
subsystems that include: 

- Monitoring and alerting systems 
- Network managers and controllers 
- History collectors 
- Etc. 

So the framework should be able to receive and process multiple types of data with 
various characteristics and should have scalable approach in order to accommodate to 
different scale data centres. 

The framework supports 

• Flexible way to import different types of streaming telemetry from different 
platforms based on gRPC schemas supporting telemetry in different scales and 
granularities from per network node up to separate network flow 

• Supporting both raw and aggregated data 

• Flexible way to define attributes that express network state: permanent and 
transient 

• Supports adding more attributes that can help telemetry consumers to identify 
data source, time, and location where data was originally produced 

• Prepare data for export and consumption by one or multiple independent external 
collectors that are not familiar with specific data producer and operate in generic 
way 
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5.1.2. Components 

The framework contains 3 components: 

- Telemetry monitors 
- Telemetry adapter  
- Telemetry ingester 

5.1.3. Telemetry monitor 

Telemetry adapter is responsible to extract raw telemetry data from network element, 
process, translate it to generic format, optionally aggregate it and compress and stream 
to telemetry adapter system for further processing. 

Telemetry monitor uses gRPC to stream the data to telemetry adapter, e.g. Figure 5.2 

 

Figure 5.2 Monitor gRPC protocol 

Every network node will run one or more telemetry monitors according network node 
capabilities and network requirements. 

5.1.4. Telemetry adapter 

Network telemetry adapter is responsible to get registrations from telemetry monitors, 
wait until one or multiple telemetry collectors connects to it and then starts to stream 
received data to collectors. 

Telemetry adapter uses a YANG schema in order to inform collectors how data is going 
to look like, convert received telemetry data to the YANG format, and stream the data in 
that format using gNMI protocol. 

syntax = "proto3"; 

package braine_pb; 

option go_package = ".;braine_pb"; 

 

message BraineAggregate { 

 string hostname  = 1; 

 string port      = 2; 

 uint64 bandwidth = 3; 

 uint64 timestamp = 4; 

} 

 

message BraineFlowSample{ 

 string hostname   = 1; 

 string egress_port  = 2;        

 string ingress_port  = 3;       

 

 string sip   = 4 ;     

 string dip   = 5 ;     

 uint32 sport   = 6;    

 uint32 dport   = 7;    

 uint32 proto   = 8;    

 uint32 buffer_occupancy = 9;   

 uint32 latency   = 10;            

 uint32 pkt_size  = 11;           

 uint32 traffic_class  = 12;      

 

 uint64 timestamp  = 13;          

} 
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When collector subscribes to receive a data it can decided to receive all the data or only 
subset of it based on the YANG schema that it received. 

 

The example below Figure 5.3 presents the YANG schema that telemetry adapter uses 
in order to export the telemetry data. Curretnly it exposes two different substreams: 
aggregated and flow sample that are grouped per interface incoming interface, so 
subscribing collector can select only a specific interface to listen for. 

 

Figure 5.3 Telemetry hierarch in YANG model 

The second table Figure 5.4 represents the data itself that is streamed. Collectors can 
extract this data according provided format and export it to other system. 

module braine-telemetry { 

 // Entrypoint /oc-if:interfaces/oc-if:interface 

 // 

 // xPath BW     --> interfaces/interface[name=*]/braine-telemetry/ 

 

 import openconfig-interfaces { prefix oc-if; } 

 

 namespace "http://braine.com/yang/telemetry"; 

 prefix "braine-telemetry"; 

 

 revision "2021-12-27" { 

  description 

   "Initial revision"; 

  reference "1.0.0."; 

 } 

 

 augment "/oc-if:interfaces/oc-if:interface" { 

  uses interfaces-braine; 

 } 

 

 grouping interfaces-braine { 

  description "Top-level grouping for BRAINE telemetry data."; 

  container braine-telemetry{ 

   container aggregated { 

    container state { 

     leaf data { 

      type string; 

      description "Interface 

Braine telemetry data  in JSON"; 

     } 

    } 

   } 

   container flow-sample { 

    container state { 

     leaf packet-sample { 

      type string; 

      description "Packet sample 

encoded in JSON"; 

     } 

    } 

   } 

  } 

 } 

} 
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Figure 5.4 Data representation YANG model 

module braine-types { 

 namespace "http://braine.com/yang/telemetry-types"; 

 prefix "braine-telemetry-types"; 

 

 container aggregated { 

  description "Interface Braine telemetry data"; 

  leaf port { 

   type string; 

   description "Port under measurements"; 

  } 

  leaf bandwidth { 

   type uint64; 

   description "Port bandwidth"; 

  } 

  leaf time{ 

   type uint64; 

   description "Timestamp"; 

  } 

 } 

 container packet-sample { 

  uses packet-info; 

  uses packet-telemetry; 

 } 

 grouping packet-info { 

  leaf sip { 

   type string; 

   description "Source IP"; 

  } 

  leaf dip { 

   type string; 

   description "Destination IP"; 

  } 

  leaf proto { 

   type uint32; 

   description "Protocol"; 

  } 

  leaf sport { 

   type uint32; 

   description "Source port"; 

  } 

  leaf dport { 

   type uint32; 

   description "Destination port"; 

  } 

 

 } 

 grouping packet-telemetry { 

  leaf ingress-port{ 

   type string; 

   description "Ingress port"; 

  } 

  leaf egress-port{ 

   type string; 

   description "Egress port"; 

  } 

  leaf buffer-occupancy { 

   type uint32; 

   description "Buffer occupancy in units of 8KB"; 

  } 

  leaf latency { 

   type uint32; 

   description "Latency in unit of 32 nanoseconds"; 

  } 

  leaf pkt-size { 

   type uint32; 

   description "Packet size in Byte"; 

 

  } 

  leaf traffic-class { 

   type uint32; 

   description "Traffic Class"; 

  } 

  leaf time  { 

   type uint64; 

   description "Timestamp  "; 

  } 

 } 

 

} 
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5.1.5. Telemetry ingester 

Telemetry ingester acts as a subscriber to telemetry adapter – it subscribes to gNMI 
stream based on YANG schema that was received, starts to receive telemetry data and 
converts it to the format that is being used. 

According the Braine architecture the telemetry data is received in InfluxDB. 

The below example Figure 5.5 presents this: 

 

 

Figure 5.5. Telegraf configuration 

[agent] 

  interval = "10s" 

  round_interval = true 

  metric_batch_size = 1000 

  metric_buffer_limit = 10000 

  collection_jitter = "0s" 

  flush_interval = "10s" 

  flush_jitter = "0s" 

  precision = "" 

  hostname = "" 

  omit_hostname = false 

[[outputs.influxdb]] 

   database="telemetry_mlnx" 

   urls = ["http://localhost:8086"] 

[[outputs.file]] 

   files = ["/tmp/metrics.out"] 

[[processors.parser]] 

   parse_fields = ["data"] 

   drop_original = false 

   data_format = "json" 

   tag_keys = ["Port"] 

   json_string_fields=["Bandwidth", "Time"] 

[[processors.parser]] 

   parse_fields = ["packet_sample"] 

   drop_original = false 

   data_format = "json" 

   tag_keys = ["Dip", "Dport", "EgressPort", "IngressPort", "Proto", "Sip", 

"Sport", "TrafficClass"] 

   json_string_fields=["BufferOccupancy", "Latency", "PktSize", "Time"] 

[[inputs.gnmi]] 

  addresses = ["localhost:9339"] 

  encoding = "json" 

   enable_tls = true 

   insecure_skip_verify = true 

   target = "braine" 

[[inputs.gnmi.subscription]] 

   name = "data" 

   path = "/interfaces/interface[name=*]/braine-telemetry/state/data" 

   subscription_mode = "target_defined" 

 [[inputs.gnmi.subscription]] 

   name = "packet-sample" 

   path = "/interfaces/interface[name=*]/braine-telemetry/state/packet-

sample" 

   subscription_mode = "target_defined" 
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5.2. Telegraf agent for 5G Data collection and Collector and Forecasting 
Functional Block 

5.2.1. Telegraf agent for 5G data collection 

In this section, it will be reported the implementation details about the integration 
among FlexRAN and Kafka using Telegraf. As already presented, Mosaic5G FlexRAN is 

an SDN controller which implements RAN control interfaces on top of the 
Openairinterface code. It enables a Software Defined approach for external 
management capabilities by applications and third parties. This allows centralized and 
coordinated strategies to be applied among different base stations to improve spectrum 
efficiency and scale system capacity. The FlexRAN platform is composed of: 

• FlexRAN Agents, which run on top of each BS; 

• FlexRAN Real Time Controller (RTC), that interacts with and coordinates the 
agents. 

• Both the RTC and agents have their own management modules, and exchange 
messages on top of a specific FlexRAN protocol. 

In order to make FlexRAN possible, the original OAI-RAN code was extended to by-pass 
the original control plane and make it interact with a well-designed southbound API 
embedded within the agents. On the other side, FlexRAN RTC exposes a northbound 
API that allows applications to manage the RAN in an abstract manner. 
The agent is also equipped with a set of control modules. Among them, there is the 
Reports and event manager module: it is used to notify the controller for available 
configurations/statistics reports that could be generated by a local event or an 
asynchronous request from the controller. Indeed, the controller implements certain 
endpoints within the northbound API which implicitly invokes the southbound one of its 
agents to retrieve the requested data.  
One of the endpoints available at the controller is the /stats one, which contains both 
static configurations (about BS, UE and LC) and statistics about many BS layers (PDCP, 
RLC and MAC). Since the idea is to use Kafka to optimize network configurations based 
on a stream of real time performance data, we focused on low-level statistics for UEs 
connected to the network. The mentioned endpoint returns data in Json format, which 
contains details for each UE attached to each BS.  
Since those metrics require to be parsed and sent over a Kafka topic, a Telegraf agent 
has been configured for this purpose.  
As already presented, Telegraf is a plugin-driven server agent used to collect metrics 
and to report events from different sources to different destinations. It offers a very low 
memory footprint, and a very good deployment flexibility. Plugins are mainly used to 
gather metrics from and send them to specific endpoints, but they can also aggregate or 
even pre-process them. For this specific case, the agent has been configured with an 
input plugin, called “execd”, which periodically invokes a Python script. The script 
retrieves the mac statistics through an http GET request to the FlexRAN /stats endpoint. 
For each query, the script parses the returned JSON object and keeps only the 
information about each UE attached to the system. For each UE, it creates an ad hoc 
Json metric, which inherits any significant information from the original structure.  

The output metrics follow the InfluxDB schema, using as tags the BS identifier and the 
UE identifier.  Each of them is then sent, using a Kafka producer output plugin, over a 
dedicated Kafka topic. The system has been tested using a local cluster of three 
brokers, with strict ordering and redundant configurations. 

The future plan are to integrate the Telegraf-based implementation with the BRAINE 
data collection framework to make data available for radio resource management 
purposes. 



 

53 

 

5.2.2. Forecasting module 

A forecasting module has been developed by SSSA for forecasting parameters based 
on current and past measurement data. The forecasting module is based on both 
traditional statistical analysis techniques and AI/ML techniques.The current version of 
the module is a custom implementation to be applied to inband telemetry (INT) data 
collected from P4 switches and user equipment position.  

The considered forecasting module, depicted in Figure 5.6,  receives the time series of 
the computed delay value for the specific application and related user position from the 
switch responsible for traffic steering. Such data are used for both training the AI/ML-
based forecasting algorithm and for forecast values inference. Note that different types 
of AI/ML techniques can be used, and training can be done in either the edge node or in 
the cloud if more computational resources are needed as reported in [Chin]. The 
forecast algorithm considered in this implementation is based on long short-term 
memory (LSTM). LSTM is a special form of a recurrent neural network (RNN) that can 
learn long-term dependencies based on the information gathered in previous steps of 
the learning process. LSTM consists of a set of recurrent blocks (i.e., memory blocks) 
where each block contains one or more memory cells and multiplicative units such as 
input, output, and forget gate. 

LSTM is one of the most successful models for forecasting long-term time series. LSTM 
can be characterized by different hyper-parameters, specifically the number of hidden 
layers, number of neurons, and batch size. Details of LSTM parameters and their impact 
on prediction accuracy can be found in [Chau]. However, the process of finding optimal 
hyper-parameters that minimize the forecasting error could be time and resource 
consuming. 

When LSTM is utilized for forecasting a time series, in general, the input vector/layer 
corresponds to the n previous data points, and the output vector/layer corresponds to k 
steps ahead with respect to the current time t of the considered time series. In this 
implementation, a stacked LSTM model is exploited with multi-step (i.e., k >1) 
forecasting. 

In LSTM multi-step forecasting (LSTM-MSF), LSTM predicts k number of data points by 
considering n previous observed data points: 

P(t +k,t +k −1,...,t +1)=model(O(t), O(t −1),..., O(t −n −1)),    (1) 

where k > 1, P is the prediction of the single data point at time t, and O is the observed 
value at time t. 

Note that offline training is considered in the evaluation, where weights are updated by 
using the backpropagation through time (BPTT) [Chau] gradient-based technique for 
training the data set. For more details on the considered implementation and 
performance evaluation the reader is referred to [Scan]. 
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Figure 5.6: Forecasting module architecture 
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6. Components 

All the components that are listed in MS8, outcome status sheet, and new ones. 

Component ID Component Name Development Owner 

C3.1 BRAINE Service Mesh 90% VMW 

GitLab Repository: https://gitlab.com/braine/braine-mesh 

Containerized: Y 

Registered on BRAINE platform image registry: Y 

Deployed as a pod and functional on BRAINE platform: Y 

Integrated with other platform components: In progress  

This component is being integrated with UseCase 1 applications 

C3.13 Image Registry 95% VMW 

GitLab Repository: https://gitlab.com/braine/registry 

Containerized: N/A 

Registered on BRAINE platform image registry: N/A 

Deployed as a pod and functional on BRAINE platform: N/A 

Integrated with other platform components: Y  

 

Component ID Component Name Development Owner 

C3.5 BRAINE RL Scheduler 90% LUH 

GitLab Repository: https://gitlab.com/braine/wp3-work_placement-luh/ 

Containerized: Y 

Registered on BRAINE platform image registry: N 

Deployed as a pod and functional on BRAINE platform: Y 

Integrated with other platform components: Y.  

This component is integrated with the telemetry database via the Data Access Agent 
(of the cognitive framework). And also integrated with the ML-based inference engine 
for worker node selection via REST APIs 

C3.5.01 BRAINE RL Trainer 80% LUH 

GitLab Repository: https://gitlab.com/braine/wp3-work_placement-luh/-
/tree/main/SchedulerTrainer 

Containerized: Y 

Registered on BRAINE platform image registry: Y 

Deployed as a pod and functional on BRAINE platform: Y 

Integrated with other platform components: Y.  

This component generates a trained ML model which is then persisted and utilized by 
the Inferencer (BRAINE RL Inference Engine for Scheduling) 

C3.5.02 Inferencer 70% LUH 

https://cnitpisa1-my.sharepoint.com/:w:/r/personal/admin_braine-project_eu/_layouts/15/Doc.aspx?sourcedoc=%7B831BF113-A69D-400B-B37F-EBDE880F02D9%7D&file=BRAINE_MS8.docx&action=default&mobileredirect=true
https://cnitpisa1-my.sharepoint.com/:x:/r/personal/admin_braine-project_eu/_layouts/15/Doc.aspx?sourcedoc=%7B9AAE5CB2-D5F5-45D2-B29F-740A6862552E%7D&file=BRAINE-Outcome-Status.xlsx&action=default&mobileredirect=true
https://gitlab.com/braine/braine-mesh
https://gitlab.com/braine/registry
https://gitlab.com/braine/wp3-work_placement-luh/
https://gitlab.com/braine/wp3-work_placement-luh/-/tree/main/SchedulerTrainer
https://gitlab.com/braine/wp3-work_placement-luh/-/tree/main/SchedulerTrainer
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GitLab Repository: https://gitlab.com/braine/wp3-work_placement-luh/-
/tree/main/SchedulerInference 

Containerized: Y 

Registered on BRAINE platform image registry: Y 

Deployed as a pod and functional on BRAINE platform: Y 

Integrated with other platform components: Y.  

This component utilizes the trained ML model and serves the scheduling mechanism 
via a REST API for the prediction of a proper worker node for a given workload and 
system state. 

C3.5.03 Data Access Agent 80% LUH 

GitLab Repository: https://gitlab.com/braine/wp3-work_placement-luh/-
/tree/main/dataAcess 

Containerized: Y 

Registered on BRAINE platform image registry: Y 

Deployed as a pod and functional on BRAINE platform: Y 

Integrated with other platform components: Y.  

This component acts as a bridge between the scheduling plugin and the telemetry 
database. Its responsibility is to serve the plugin, via a REST API, with information 
about the resource usages/availability of each of the worker nodes of the cluster. 

 

Component ID Component Name Development Owner 

C3.6 Telemetry Infrastructure 85% LUH 

GitLab Repository: https://gitlab.com/braine/wp3-telemtry-luh/-
/tree/main/T34/telemetry 

Containerized: Y 

Registered on BRAINE platform image registry: Y 

Deployed as a pod and functional on BRAINE platform: Y 

Integrated with other platform components: Y 

Status Report: 

The telemetry infrastructure consists of multiple components are integrated, 
dockerized, podified, and, and deployed. The components are: 

• C3.6: Telemetry database using InfluxDB 

• C3.6.01: Telemetry metric exporter using node_exporter, cAdvisor, and use-
case applications  

• C3.6.02: Telemetry scraper using Prometheus 

• C3.6.03 Telemetry Alerting using Alert Manager (under research and test) 

• There is also a monitoring dashboard but the component is realized as a part 
of WP4 (T4.4) 

 

 

Component ID Component Name Developme Owner 

https://gitlab.com/braine/wp3-work_placement-luh/-/tree/main/SchedulerInference
https://gitlab.com/braine/wp3-work_placement-luh/-/tree/main/SchedulerInference
https://gitlab.com/braine/wp3-work_placement-luh/-/tree/main/dataAcess
https://gitlab.com/braine/wp3-work_placement-luh/-/tree/main/dataAcess
https://gitlab.com/braine/wp3-telemtry-luh/-/tree/main/T34/telemetry
https://gitlab.com/braine/wp3-telemtry-luh/-/tree/main/T34/telemetry
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nt 

C3.8 MOD – Learning module 90% FS 

GitLab Repository: https://gitlab.com/braine/wp3-mod_learning_module-fs  

Containerized: Y 

Registered on BRAINE platform image registry: Y 

Deployed as a pod and functional on BRAINE platform: Y 

Integrated with other platform components: Y – Discovery Module and Detection 
Module of MOD Application 

Status Report: 

Learning module was tested on CNIT Braine Testbed. Currently this component is 
being integrated within the UC3 and other modules of Motif Discovery Tool (WP4). 

 

Component ID Component Name Development Owner 

C3.9 Image Orchestrator 100% ECC 

GitLab Repository: https://github.com/eccenca/braine/tree/main/container-orchestrator 

Containerized: N 

Registered on BRAINE platform image registry: N 

Deployed as a pod and functional on BRAINE platform: N  

Integrated with other platform components: Y – The Image Orchestrator performs 
image deployment and synchronize metadata between the Global Image Registry and 
the BRAINE Image & Service Catalog. 

Status Report: 

The Image Orchestrator is fully functional and integrated and with the Global Image 
Registry. 

 

Component ID Component Name Development Owner 

C3.10 Metrics Relay 100% ECC 

GitLab Repository: https://github.com/eccenca/braine/tree/main/relay 

Containerized: N 

Registered on BRAINE platform image registry: N 

Deployed as a pod and functional on BRAINE platform: N  

Integrated with other platform components: Y – The relay collects Nodes’ metadata 
from the SLA Broker and populate BRAINE catalog with available Nodes and 
resources. 

Status Report: 

The Metrics Relay is fully developed and integrated with the SLA Broker. 

 

Component ID Component Name Development Owner 

https://gitlab.com/braine/wp3-mod_learning_module-fs
https://github.com/eccenca/braine/tree/main/container-orchestrator
https://github.com/eccenca/braine/tree/main/relay
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C3.11 BRAINE Ontology 100% ECC 

GitLab Repository: https://github.com/eccenca/braine-vocab 

Containerized: N 

Registered on BRAINE platform image registry: N 

Deployed as a pod and functional on BRAINE platform: N  

Integrated with other platform components: Y– The BRAINE ontology is being used to 
instantiate the BRAINE Resource & Service Catalog. 

Status Report: 

The BRAINE Ontology has been created and is being periodically improved with 
revisions addressing issues. 

 

Component ID Component Name Development Owner 

C3.12 Knowledge Bootstrapper 100% ECC 

GitLab Repository: https://github.com/eccenca/braine/tree/main/setup 

Containerized: N 

Registered on BRAINE platform image registry: N 

Deployed as a pod and functional on BRAINE platform: N  

Integrated with other platform components: Y – Integrated with the BRAINE Resource 
& Service Catalog. 

Status Report: 

The Knowledge Bootstrapper has been created, tested, and is being used to 
bootstrap information at the Resource & Service Catalog with BRAINE data model. 

Component ID Component Name Use Cases Owner 

C3.13 SDN Controller UC2 CNIT 

GitLab Repository: https://gitlab.com/braine/WP3-SDN-CONTROLLER 

Containerized: N 

Registered on BRAINE platform image registry: N 

Deployed as a pod and functional on BRAINE platform: N  

Integrated with other platform components: Y – Info 

The SDN controller will configure the network layer aiming at both enabling the traffic 
forwarding (with the required QoS) and the traffic monitoring toward the telemetry 
system. In its first version the BRAINE SDN controller was released with a northbound 
application (i.e., the BRAINE app) opening a REST APIs toward the K8s orchestrator 
and other BRAINE components. In this period a companion application has been 
developed, tested, and demonstrated in an international conference to enable the 
discovery of PODs deployed by K8s and the forwarding and monitoring of traffic 
exchanged among PODs.  

With this additional application the SDN controller enables the matching of the traffic 
at the PODs level (assuming K8s working with the Flannel tool in VXLAN mode) thus 
enables the specific monitoring of each traffic flow with the required granularity. This 
enables the detection of QoS degradation (e.g., latency degradation) by the telemetry 
system that can provide feedback to the SDN controller itself to take actions on the 

https://github.com/eccenca/braine-vocab
https://github.com/eccenca/braine/tree/main/setup
https://gitlab.com/braine/WP3-SDN-CONTROLLER
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network aiming at recovering the QoS requirements satisfaction. 

The SDN controller is integrated with the telemetry system in both directions. Indeed, 
the SDN controller is able to configure the network devices to forward postcard 
telemetry data toward a telemetry collector point that, after some aggregation, pushes 
the data into the InfluxDB. In turn, the telemetry system exploiting the Graphana tool 
is able to generate alarms that triggers a call to the REST APIs of the SDN controller 
itself. 

The integration with the K8s orchestrator is in phase of development. The SDN 
orchestrator and the P4 application have been extended to allow matching and 
telemetry of the traffic at the POD level. Moreover, an interaction with the K8s REST 
has been designed to import detailed information regarding deployed PODs.   

Status Report: 

The SDN controller is based on the ONOS open-source project. The additional ONOS 
components developed for BRAINE (i.e., the BRAINE app and the P4 app have been 
updated to the BRAINE GitLab). Both applications are in phase of testing on the CNIT 
testbed, therefore they may be improved to introduce additional functionalities and to 
fix possible issues.  

 

Component ID Component Name Development Owner 

C3.16 Multi-access Edge Computing 
platform 

100% SMA 

GitLab Repository: https://github.com/Sma-RTy/native-on-prem.git 

Containerized: N 

Registered on BRAINE platform image registry: N 

Deployed as a pod and functional on BRAINE platform: N  

Integrated with other platform components: N – Alternative platform for performance 
comparison 

Status Report: 

MEC platform is online and available to host third parties' applications for UC2 

 

Component ID Component Name Development Owner 

C3.17 AI image processing engine 70% SMA 

GitLab Repository: https://github.com/Sma-RTy/deepsort 

Containerized: Y 

Registered on BRAINE platform image registry: Y 

Deployed as a pod and functional on BRAINE platform: Y  

Integrated with other platform components: Y – Application to be deployed in BRAINE 
Kubernetes cluster 

Status Report: 

The AI for tracking road users has been developed and a Docker container has been 
created. The application has to be ported to BRAINE platform and deployed in a 
Kubernetes cluster with hardware acceleration support. 

https://github.com/Sma-RTy/native-on-prem.git
https://github.com/Sma-RTy/deepsort
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Component ID Component Name Development Owner 

C3.18 Edge-to-edge multiagent communication 75% CTU 

GitLab Repository:  

Containerized: N 

Registered on BRAINE platform image registry: N 

Deployed as a pod and functional on BRAINE platform: N  

Integrated with other platform components: N – but there is a plan to utilize RabbitMQ 
as the MQTT broker for the MOD component 

Status Report: 

After testing the first version of the prototype of multiagent communication, 
architectural changes were introduced to simplify and speed up the communication. 
The whole architecture uses RabbitMQ as an AMQP broker that passes messages to 
particular agents. At the same time, FIPA inspired schema of the message, and 
asynchronous message processing was introduced to allow multiagent negotiation.  

  

The component is currently in the stage of incorporation into the agents. As a further 
step, the communication needs to be tested with the whole multiagent platform and, 
based on the results, modified and optimized if necessary. 

 

 

Component ID Component Name Development Owner 

C3.17 Telemetry monitors & exporter 35% MLNX 

GitLab Repository:  

Containerized: Y 

Registered on BRAINE platform image registry: N 

Deployed as a pod and functional on BRAINE platform: N 

Integrated with other platform components: Y  

Status Report: 

After several prototypes we finished initial implementation of the telemetry monitor 
application that includes a generation of telemetry data and streaming it to any 
addressable telemetry adapter. 

On the next phase we plan to support information extraction from network device 
drivers that will include bandwidth and latency 

 

Component ID Component Name Development Owner 

C3.17.1 Telemetry adapter 70% MLNX 

GitLab Repository:  

Containerized: Y 

Registered on BRAINE platform image registry: N 
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Deployed as a pod and functional on BRAINE platform: N 

Integrated with other platform components: Y  

Status Report: 

After several prototypes initial implementation specific for currently exported telemetry 
data and YANG model is finished. It includes basic bandwidth and flow telemetry 
measurements.  

In the next phase the support for additional telemetry like latency histograms will be 
introduced – it will include south interface based on gRPC for telemetry streamers 
and northbound interface for YANG subscribers. 

It is also planned to podify the container to simplify its integration and deployment in 
BRAINE cluster. 

 

 

Component ID Component Name Development Owner 

C3.17.2 Telemetry ingester 85% MLNX 

GitLab Repository:  

Containerized: Y 

Registered on BRAINE platform image registry: N 

Deployed as a pod and functional on BRAINE platform: N 

Integrated with other platform components: Y  

Status Report: 

After several prototypes it was decided to implement telemetry ingester with Telegraf 
framework. And Initial implementation specific for currently exported telemetry data 
and initial InfluxDB schema is finished. 

In the next phase we plan to expand the implementation for final telemetry 
parameters and based on telemetry consumers’ feedback update the exporting 
schema to enable better performance and visualization. 

 

Component ID Component Name Development Owner 

C3.3 Telegraf agent for 5G data 
collection 

80% SSSA 

GitLab Repository: https://gitlab.com/braine/wp3-5g-sssa/-/tree/main/T31 

Containerized: Y 

Registered on BRAINE platform image registry: Y 

Deployed as a pod and functional on BRAINE platform: N 

Integrated with other platform components: Y - Forecasting functional block 

Status Report: 

The collection module is currently functional and perfectly integrated with the rest of 
the platform. The next step is to check the correctness of the developed Pod manifest.  

 

https://gitlab.com/braine/wp3-5g-sssa/-/tree/main/T31
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Component ID Component Name Development Owner 

C3.5 Forecasting functional block 60% SSSA 

GitLab Repository: https://gitlab.com/braine/wp3-ffb-5g-sssa 

Containerized: N 

Registered on BRAINE platform image registry: N 

Deployed as a pod and functional on BRAINE platform: N  

Integrated with other platform components: Y – Telegraf agent for 5G data collection 

Status Report: 

A preliminary implementation of this module has been developed. It takes in input 
data from a Kafka topic and, using an LSTM model, produces forecasted data to 
another Kafka topic.  

 

 

Component ID Component Name Use Cases Owner 

C4.10 Exporter for the metrics for the UC1 

application ‘AI-driven Digital Twin 

solution for new digital ecosystems 

enabling Smart Healthcare in Medical 

and Caregiving Centres’ 

UC1 IMC 

The  ‘AI-driven Digital Twin solution for new digital ecosystems enabling Smart Healthcare in Medical 
and Caregiving Centres’, being part of a WP5 as Use Case1 and is also part of the WP3, WP4 where 

specific work is being carried out e.g. adaptation the Edge-based system for human-centric applications.  

  

IMC has prepared the ‘BRAINE Living eHealth model’ (part of WP3 task plan) focused on the 

healthcare-specific environment with the consideration that application shall be operated and run on 

EMDC with the clear understanding what is actually happening to the application itself. 

  

While the Telemetry Infrastructure (component C3.6) is focused on the EMDC itself, additional 

component was designed and develop for the ‘AI-driven Digital Twin solution for new digital 

ecosystems enabling Smart Healthcare in Medical and Caregiving Centres’.  

  

Although the component is registered in WP4, it is an integral part of this work package (WP3) and 

custom metrics to get meaningful data about application performance were designed. The exporter for 

the metrics for the UC1 application connects to the C3.6 and provides an endpoint "/metrics" and sends 

GET metrics on request from the Prometheus server and deployed as a pod and is functional on 

BRAINE platform (Y)/ 

 

  

https://gitlab.com/braine/wp3-ffb-5g-sssa
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7. Conclusion 

This deliverable has presented the main activities in year-2 of the BRAINE project 
related to the design, prototype and implementation of the BRAINE WP3 components. 
The deliverable dedicated a specific section for each task to show its main contributions. 
The illustrated achievements include components functionalities and development 
status. Moreover, the design of a novel Cognitive Framework is described in this 
document. Finally, a list of all WP3 software components’ details and links to their 
implementations in the BRAINE Gitlab account is also provided. 
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